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Multiparametric amplification and qubit measurement with a Kerr-free Josephson ring modulator
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Josephson-junction based parametric amplifiers have become a ubiquitous component in superconducting
quantum machines. Although parametric amplifiers regularly achieve near-quantum limited performance, they
have many limitations, including low saturation powers, lack of directionality, and narrow bandwidth. The
first is believed to stem from the higher order Hamiltonian terms endemic to Josephson junction circuits, and
the latter two are direct consequences of the nature of the parametric interactions which power them. In this
work, we attack both of these issues. First, we have designed a new, linearly shunted Josephson ring modulator
(JRM), which nearly nullifies all fourth-order terms at a single flux bias point. Next, we achieve gain through
a pair of balanced parametric drives. When applied separately, these drives produce phase-preserving gain (G)
and gainless photon conversion (C); when applied together, the resultant amplifier (which we term GC) is a
bidirectional, phase-sensitive, transmission-only amplifier with a large, gain-independent bandwidth. Finally, we
have demonstrated the practical utility of the GC amplifier, as well as its quantum efficiency, by using it to read
out a superconducting transmon qubit.
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I. INTRODUCTION

In recent years, the potential of superconducting qubits as
a quantum computing architecture has grown tremendously
[1,2]. This is due in part to quantum limited, Josephson-
junction based parametric amplifiers (JPAs), which are able
to enhance qubit signals while adding the minimum amount
of noise and backaction, allowed by quantum mechanics [3].
In these devices, gain is achieved by intensely driving the
nonlinear Hamiltonian of a circuit containing one or more
Josephson junctions to parametrically couple together one or
more microwave modes [4]. Paramps regularly enable exper-
iments with single-shot, high-fidelity quantum nondemolition
(QND) measurements of superconducting quantum bits [5–7].

At present, there are two families of parametric amplifiers:
those based on discrete microwave resonances and those
based on nonlinear transmission lines, so-called traveling
wave parametric amplifiers (TWPAs). TWPAs have superior
instantaneous bandwidth and saturation power, but their typ-
ical reported noise performance is higher by a factor of a
few than resonant mode-based JPAs, and, although they are
directional amplifiers, reflected pump and signal tones still
often require operation with external circulators [8–10]. On
the other hand, resonator-based JPAs (the focus of this work)
contain typically far fewer Josephson junctions, are far easier
to fabricate, and operate very near the quantum limit. Their
limitations are a fixed gain-bandwidth product, low input
saturation powers, and lack of directional amplification (that
is, they amplify in reflection and so must be operated with
external circulators) [11–13].

These issues stem from multiple causes. Recent work has
shown that higher order terms in the amplifier Hamiltonian
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can limit the saturation power of the device [14–17,32], while
the lack of directionality and fixed gain-bandwidth product
are inherent to the choice of parametric coupling used in the
amplifier. However, there are numerous theoretical [18–20]
and experimental works [21–25] showing that applying multi-
ple, simultaneous couplings in an amplifier containing two or
more modes or ports can result in devices which potentially
circumvent some or all of these limitations.

In this work, we begin by developing a kinetic-inductance
shunted Josephson ring modulator (JRM) mixing element
which is free of fourth-order nonlinearities for a certain bias
flux, and embed it in a Josephson parametric converter (JPC)
[12,26]. The JPC consists of three microwave modes, each
linked to a single microwave port. The JRM provides a general
third-order coupling between the device’s three modes. Phase-
preserving gain (G) using a pair of modes is typically achieved
by driving one mode off resonance at the sum of the other two
modes’ frequencies. Gainless photon conversion (C) between
two modes, from which the JPC derives its name, is achieved
by driving instead at the difference frequency.

Next, we follow the scheme suggested in Ref. [18], in
which both G and C drives are applied simultaneously to a
single pair of modes with matched coupling strengths. The
combination of frequency conjugating (G) and nonconjugat-
ing (C) processes results in phase-sensitive, transmission-only
amplification, shown schematically in Fig. 1. The device
has unity reflection gain, operates bidirectionally, and still
requires external circulators, but it has a number of desirable
features. First, it has a fixed, large bandwidth (≈60% of the
modes’ linear bandwidths). Second, rather than having diver-
gent gain at fixed pump power, its gain is linearly dependent
on pump power, with potential advantages in gain stability and
device saturation behavior.

Although this scheme has been proposed previously, ef-
forts to implement it have been hampered by the presence
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FIG. 1. (a) Schematic of quantum measurement experiment. A quantum limited amplifier, the Josephson parametric converter (JPC), is
used in transmission to measure a transmon qubit mounted inside a three-dimensional (3D) cavity. (b) Diagram of the “GC” scattering matrix.
The JPC has three microwave modes (modes a, b, and c) with a generic three-body coupling which we use to implement parametric couplings.
For GC amplification between modes a and b, we drive mode c, with balanced pump strengths, at both the sum (G) and difference (C) of the
modes’ frequencies.

of higher order Hamiltonian terms in the JRM. Notably,
unshunted [26] and Josephson-junction shunted JRMs [14,27]
have fourth-order self- and/or cross-Kerr terms at all bias
fluxes. These terms cause the amplifier’s mode frequencies
to shift with applied pump power, making biasing the GC
mode of operation, which requires far more intense pumps
than G or C alone, extremely difficult. By operating our
kinetic-inductance shunted JRM at a bias point which nearly
nulls all Kerr terms in the device simultaneously, we have
demonstrated 21 dB of phase-sensitive gain (15 dB of phase-
preserving gain), with a greatly enhanced bandwidth. To
demonstrate the viability of this mode of operation in practical
quantum information experiments, we used the GC amplifier
to measure a transmon qubit. By strongly measuring the qubit,
we were able to perform high fidelity qubit readout. We
also performed deliberately weak measurement experiments
to determine the device’s quantum efficiency.

II. THEORY OF THE GC AMPLIFIER AND THE NULLING
OF THE FOURTH-ORDER TERMS

The block diagram describing our scheme for qubit mea-
surement and signal amplification is shown in Fig. 1(a). The
qubit resides inside the measurement cavity, which has two
ports, a strong port and a weak port. The weak port (on
the left) is used for driving the cavity and qubit while the
strong port (on the right) is used for measuring the qubit.
The measurement signal is routed via two circulators, which
ensure that the reverse amplified quantum noise and reflected
signals from the amplifier do not travel backward to the qubit.
The JPC’s output is further amplified by a cryogenic high-
electron-mobility transistor (HEMT) amplifier before being
recorded at room temperature. The scattering matrix of the
GC amplifier is shown in Fig. 1(b). Signals entering a port are
reflected with unity gain and transmitted with phase-sensitive
gain, whose amplified quadrature is determined by the phases
of the applied pumps.

The effective circuit diagram of our inductively shunted
JRM is depicted in Fig. 2(a). The key ingredients of the model
are (1) the Josephson junctions, (2) the shunt inductors labeled
Lshunt, and (3) the stray inductance on the outer arms of the
JRM, labeled Lout. In this setup, the outer ring of the JRM,

which contains the Josephson junctions, is the source of the
nonlinear couplings between the modes of the JPC. The shunt
inductors are used to control the degeneracy of the ground
state of the JPC at finite magnetic flux bias. They lift the
energy of states in which current flows through the shunt
inductors, thus preventing the device from switching to these
undesired configurations. The stray inductors are an inherent
property of the aluminum traces which we use to make the
outer ring of our JRM.

The circuit is described by the Hamiltonian HJRM =
Hshunt + Hout, composed of the shunt Hamiltonian

Hshunt =
4∑

i=1

φ2
0

2Lshunt
(ϕi − ϕE )2, (1)

and the outer ring Hamiltonian

Hout =
4∑

i=1

Hseg(ϕi+1 − ϕi − φext/4). (2)

Here, ϕi is the superconducting phase at the ith vertex of the
JRM [see Fig. 2(a)], we use the notation ϕ5 = ϕ1 [28], and ϕE

is the phase at the middle point which is constrained by the
outer node phase by ϕE = ∑4

j=1 ϕ j/4. The phase gain due to
the externally applied flux bias in each of the four outer arms
of the JRM is φext/4 = (2e/h̄) �ext/4. The energy of an outer
ring segment phase biased to ϕ is

Hseg(ϕ) = min
χ

φ2
0

2Lout
(ϕ − χ )2 − EJ cos(χ ), (3)

and the minimization with respect to χ results in a tran-
scendental equation that ensures that the current in the outer
inductor is identical to the current in the Josephson junction.

Next, we analyze the nonlinear couplings between the JPC
modes. Here, we focus on the case in which the JPC has a
nondegenerate ground state centered on ϕ1 = ϕ2 = · · · = 0.
In this case, the phases at the JRM vertices can be expressed in
terms of the canonical variables ϕa, ϕb, and ϕc that correspond
to the a, b, and c eigenmodes of the JPC:

{ϕ1, ϕ2, ϕ3, ϕ4}
= {ϕa + λ1ϕc, ϕb − λ2ϕc,−ϕa + λ1ϕc,−ϕb − λ2ϕc}. (4)
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FIG. 2. (a) Schematic circuit diagram of inductively shunted JRM. The circuit model for the JRM contains four Josephson junctions on
each outer arm. We label the phase at the parts of the JRM as ϕ1 to ϕ4. We introduce shunted linear inductors as well as stray inductors
representing the geometric inductance in the outer arm to most accurately represent the total JRM inductance. (b) SEM image of a NbTiN
shunted JRM. Our Josephson ring modular features shunts made from thin (2 μm wide by 10 nm thick) strips of NbTiN, which have a kinetic
inductance about five times larger than their physical size. (c) Measurement of mode a’s self Kerr versus applied flux. For each flux point,
we represent the shift away from the small-signal resonant frequency, with positive, zero, or negative Kerr with a blue, white, or red color,
respectively. The two cancellation points (where the plot remains white for all pump powers) are indicated with vertical dashed black lines.

The coefficients λ1 = C3/
√

C2
1 + C2

3 and λ2 = C1/
√

C2
1 + C2

3
come from the JPC eigenmode analysis and their values de-
pend on the capacitors added to the JRM to make the JPC; see
Appendix B. We obtain the nonlinear couplings between the
normal modes of the JPC by taking derivatives of HJRM with
respect to the canonical variables. For the self- and cross-Kerr
terms, we find

Kaa = 1

4!

∂4HJRM

∂ϕ4
a

= 1

6
H (4)

seg (ϕext/4) = Kbb = Kcc, (5)

Kab = 1

4

∂4HJRM

∂ϕ2
a∂ϕ2

b

= H (4)
seg (ϕext/4) = Kac = Kbc. (6)

Observe that all of the Kerr terms are proportional to the
fourth derivative of Hseg(ϕ) with respect to ϕ evaluated at
ϕ = ϕext/4. The cosine Hamiltonian of the junction means
that the Kerr naturally passes through zero, if the desired flux
configuration holds to the required flux. Moreover, all six Kerr
terms vanish identically at a single null point. In the absence of
stray inductance (i.e., Lout → 0), the null occurs at φext = 2π ;
the null point persists and shifts toward φext = 4π as Lout → 0
increases (see Appendix A).

We now introduce two dimensionless parameters that we
will use to characterize our circuits. The first parameter, β =
Eshunt/EJ = LJ/Lshunt = φ2

0/LshuntEJ , measures the strength
of the shunt inductors relative to the effective inductance of
Josephson junctions [28]. We note that β = 0 is the case
when the JRM is unshunted. To see this, in an unshunted-JRM
model, the center node and the inner shunted linear inductance
are fictitious; i.e., there should be no energy contribution
from these linear inductors, which means Eshunt = 0, β = 0.

The second parameter, α = Lout/LJ = LoutEJ/φ
2
0 , measures

the strength of the Josephson junction with respect to the stray
inductance, preferably α � 1 to ensure that the Josephson
energy dominates the stray inductance. At the same time, β

should be sufficiently large to ensure that ϕ1 = ϕ2 = · · · = 0
is the global minimum of HJRM and hence the JPC has a single,
well-defined ground state at the null point. For the case α = 0,
the nondegeneracy of the ground state for all values of ϕext is

ensured by setting β > 4. As α increases, so does the mini-
mum required value of β (we address these requirements by
analyzing the degeneracy of the ground state in Appendix A).

A similar analysis of the JRM with Josephson-junction-
based shunts (as in Refs. [14,27]) shows that the cross-Kerr
terms null together at a similar point to our linearly shunted
JRM, but the self-Kerr null point is shifted to a larger flux. As
the behaviors of the various Kerr terms are very similar in their
effect on device performance, the junction-shunted JRM ring
will not realize the benefits of a linearly shunted JRM but will
instead perform essentially no differently from the unshunted
version. We have also found, in both theory and experiment,
that asymmetries in junction critical current and applied bias
flux to the JRMs four loops must be minimized, as they can
cause substantial difference in the flux response, and hence
Kerr nulling, of the JRM.

III. EXPERIMENT

We form a JPC by embedding the JRM at the intersection
of two, single-ended microstrip resonators, as in Ref. [14].
The target parameters, junction I0 = 2 μA β > 4 and α � 1,
were fabricated using either meandering shunt inductances
[29,30] or kinetic-inductance shunts. We achieved superior
control using kinetic-inductance shunts, due to the smaller
physical size, and hence smaller α due to reduced stray
inductance on the outer arms of the JRM.

To fabricate our JRM, we first sputter a film of 10-nm-thick
NbTiN onto a polymethyl methacrylate (PMMA) mask on
which a cross with arm widths and lengths of 2 and 15 μm
respectively, has been patterned. The PMMA layer is subse-
quently lifted off with acetone. The resulting shunt inductors
have Lshunt � 75 pH, about five times their geometric value.
Next, standard double-angle aluminum deposition is used to
create the outer ring of the JRM. As NbTiN does not form a
native oxide, good contact to the upper (aluminum) portion
of the circuit is achieved with only a standard, gentle argon-
oxygen cleaning step prior to deposition of the first layer of
aluminum.
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FIG. 3. (a) Measured transmission and reflection coefficients. For phase-preserving gains between 8 and 15 dB, we found gain in
transmission, with near unity gain in reflection. The notch at 7.45 GHz is the cavity response, which we have deliberated detuned away
from the gain peak for clarity. (b) Bandwidth comparison. Gain curves from part (a) are normalized relative to their peak gain and center
frequency and are plotted together to show the fixed bandwidth regardless of the gain. The black dashed curve represents the gain peak and
bandwidth of a 20 dB, phase-preserving singly pumped process. (c) Phase sensitivity. Here we show a spectrum analyzer (received power)
trace when the GC amplifier is driven with a fixed tone 5 MHz detuned from its center frequency. The presence of a symmetrically detuned
idler tone below the center frequency is a clear demonstration of the phase-sensitive nature of this device’s gain.

In order to characterize the self- and cross-Kerr terms for
a given mode or pair of modes, a pump tone is applied that
is fixed 5 line widths away from the resonant frequency,
while a second, weak tone is swept through the mode’s res-
onant frequency with a vector network analyzer (VNA) (see
Appendix C). The Kerr amplitude is seen as a shift in resonant
frequency with increasing pump power [16]. The cancellation
points at which the resonant frequency remains fixed is shown
in Fig. 2(c). In subsequent qubit measurements, the frequency
of the qubit cavity was tuned with an aluminum screw to align
with the most fourth-order free point of our JPC.

Next, we identified the mode a and b frequencies,which
are 7.4668 and 4.8715 GHz respectively, and pumped at their
sum, tuning the applied pump power to achieve 20-dB gain in
reflection (G). We repeated the process with the pump at the
difference frequency (C), tuning the applied pump power to
find a 20-dB dip in reflection. These bias powers are each very
close to the critical values and tell us the room-temperature
ratio of applied microwave powers required to balance the G
and C processes. We next tuned the applied pump frequencies
until they linked to identical idler frequencies in transmission
through the device.

Turning on both drives simultaneously achieves GC ampli-
fication. We control GC gain by increasing or decreasing both
pumps simultaneously while maintaining the ratio established
above. Measured GC amplification gain strengths between 8
and 15 dB, along with reflection performance, are shown in
Fig. 3(a). All transmission gain curves are measured with a
VNA. An external mixer at the difference frequency converts
device outputs from the idler mode back to the input, signal-
mode, frequency. The VNA is sensitive only to a single
frequency, thus all gains shown are phase preserving, and
so for large gains, the phase-preserving gain peak sits about
6 dB below the phase-sensitive gain of the device, so that the
maximum phase-sensitive gain for the 15.5-dB curve (which
we will use for qubit readout) is 21.5 dB. Above 10-dB gain,
the frequency of the pump tones had to be adjusted slightly

to account for the imperfectly nulled higher order terms,
which shifted the device’s modes, and hence, the frequency
of peak gain, to lower frequencies. At the same time, the
reflection curves at this higher power start to show small
disturbances away from unity [see Fig. 3(a)]. For clarity in
these experiments, the amplifier is shifted slightly below the
cavity frequency, which is evident as a notch to the right of
the gain peaks.

The other notable property of GC amplification is that
unlike a single parametric process, the gain of GC is a linear
function of the (matched) pump powers for each parametric
process. We have compared the theory of pump power for
each parametric to the actual pump power applied to the
device as shown in Fig. 12.

The other crucial feature of these gain curves is that
they demonstrate the same bandwidth regardless of gain [see
Fig. 3(b)]. We compare these bandwidths with the standard
20 dB for one single pump amplification process represented
by the black dashed curve. The GC amplifier shows 14 MHz
of phase-preserving bandwidth. In contrast, a singly pumped
gain response of 20 dB only has a bandwidth of 2.33 MHz
in the same device. This bandwidth is approximately 6 times
larger, in good agreement with theory.

We also show a spectrum analyzer (received power) trace
when the GC amplifier is driven with a fixed tone 5 MHz
detuned above its center frequency in Fig. 3(c). The pres-
ence of a symmetrically detuned tone below the center fre-
quency is a clear demonstration of the phase-sensitive nature
of this devices’ gain. Collectively, Fig. 3 demonstrates all
key predicted features of GC amplification: fixed bandwidth,
0 dB gain in reflection, and phase-sensitive amplification in
transmission.

The performance of dynamic range (see Fig. 11 in
Appendix E) still experiences the effect of fourth-order terms
and this might be due to having residual inherent Kerr terms
and dynamic Kerrs generated by pumps as mentioned in
Ref. [17,32]. Furthermore, the saturation power can still be
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FIG. 4. (a) Histogram of strong measurement with optimally aligned cavity drive and amplifier phase. This histogram consists of 80 000
shots in which the qubit is prepared in the state |�〉 = (|g〉 + |e〉)/

√
2 and projectively measured. The cavity drive has been aligned to the

center (phase-sensitive point) of the GC amplifier and the relative phases of the cavity drive and amplifier aligned to maximize the projectivity
of the measurement. (b) Histogram of strong measurement with orthogonally aligned cavity drive and amplifier phase. By rotating the relative
phase of cavity drive and amplifier by 90 deg compared to part (a), we show that the states of the qubit after projective measurement now
completely overlap. (c) Quantum jumps. Here we demonstrate the ability to perform rapid QND measurements by continually monitoring the
qubit and observing a well-resolved quantum jump in its evolution.

affected by even higher order terms even though we operate
the device at the nulling points.

To demonstrate that our Kerr-nulled, GC pumped device
is a practical, quantum-limited amplifier, we also performed
phase-sensitive strong or projective measurements on a su-
perconducting transmon qubit. All further qubit measure-
ments are performed in the configuration shown in Fig. 1(a).
The qubit is first prepared in the superposition state |�〉 =
(|g〉 + |e〉)/

√
2, and we determined the optimal alignment

of the device’s amplified quadrature by finding the largest
separation between ground and excited states when projective
measurement is performed, as shown in Fig. 4(a). Rotating
the relative pump phase by 180 deg from this optimal point
moves the signal to the squeezed quadrature, so that the |g〉
and |e〉 states overlap, as seen in Fig. 4(b). Both histograms
contain 80 000 measurements. We also measured spontaneous
quantum jumps between the |g〉 and |e〉 state when the phase
was rotated to the optimal alignment and the cavity was driven
for 7.5 μs, as shown in Fig. 4(c).

Finally, we calculate the quantum efficiency of our ampli-
fier via the back-action of deliberately weak measurements
on the qubit’s state, as in Refs. [6,31]. The pulse sequence
is detailed in Appendix D. For phase-sensitive amplification,
only one microwave quadrature can be received at room
temperature. In a qubit measurement, this confines the qubit
back-action to a single plane on the Bloch sphere, determined
by which quadrature is amplified. To calibrate our quantum
efficiency (η), we use the amplifier aligned as in Fig. 4(b),
resulting in a pure back-action on the qubit’s phase, shown in
Fig. 5. We found that our quantum efficiency was η = 55%, in
good agreement with the efficiency of the device when oper-
ated as a single pump, phase-preserving amplifier at the same
bias point. We also performed weak measurements with the
amplifier aligned optimally as in Fig. 4(a) (for which the back-
action is only on the qubit’s z coordinate, shown in Fig. 9).

IV. CONCLUSION

In conclusion, we have created a JPC with a linearly
shunted JRM that features flux bias points where all Kerr

terms can be nulled simultaneously. We used this fourth-
order free JRM to realize practical, robust GC amplification,
which has phase-sensitive gain in transmission, unity gain in
reflection, and a fixed bandwidth that is six times larger than
a singly pumped, phase-preserving 20-dB gain curve from the
same device.

We have measured a transmon qubit with this device,
demonstrating high fidelity projective measurements and
quantum jumps. Finally, we used weak qubit measurements
to find the quantum efficiency of this mode of amplification.
The result, η = 0.55, is comparable to the efficiency of the
device when operated as a singly pumped, phase-preserving
amplifier. We quote efficiency, rather than readout fidelity,
as the figure of merit for the amplifier as the latter quantity
involves a number of factors (such as qubit T1 and insertion
loss between cavity and amplifier), which are unrelated to
virtues of GC amplification. The device used in this work
was also chosen to have a modest bandwidth (≈20 MHz) to
reduce the required pump powers for GC operation. Although
the bandwidth was more than sufficient to amplify our qubit
cavity, in future work we will open the bandwidth allow for
multiple qubits to be read out in a single device.

This work suggests numerous avenues for future improve-
ments of parameteric amplifiers. First, by extending the num-
ber of pumps to six, while keeping the number of modes
at three, we can retain the benefits of GC pumping scheme
and achieve directional amplification [18]. Second, we should
continue to explore the wealth of potential parametric driving
schemes, which may yield devices with further improved per-
formance. Finally, by continuing to fine-tune the engineered
Hamiltonian of our JRMs we can enhance the saturation
power of our device [16,32].
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FIG. 5. (a) Histogram of weak measurement protocol with orthogonal alignment (Q-quadrature amplified) to determine quantum efficiency
of the GC amplifier. Each plot contains 80 000 measurements. (b)–(d) Conditional expectation values of X/Y/Z after weak measurement
plotted vs measurement outcomes. Sinusoidal oscillation in both X and Y are a nonclassical stochastic Ramsey process. Together with the
nearly constant outcomes for Z , these plots show how an orthogonally aligned measurement provides a “kick” around the equator of the Bloch
sphere.
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APPENDIX A: THE DEGENERACY OF THE GROUND
STATE OF THE JPC

In this section, we analyze the degeneracy of the ground
states of the shunted JPC for two cases: without and with
the stray inductors. Specifically, to find the degeneracy of the
ground state we count the number of global minima of HJRM.

We first consider the JPC without stray inductors, i.e.,
Lout = 0, α = 0. We numerically find the global minima of
the JRM Hamiltonian by forming a set of possible minimum
points by randomly seeding a numerical minimum with initial
values of ϕ1, ϕ2, ϕ3, and ϕ4. From this set, we select the

minima that correspond to smallest values of HJRM, and finally
we throw away repeated points. In Fig. 6(a), we plot the
degeneracy of the JRM ground state as we sweep the external
magnetic flux and the shunting parameter β. The blue region
in the plots corresponds to conditions under which the JRM
has a single global minimum (the JPC has a nondegenerate
ground state), while the orange and red regions corresponds
to doubly and quadruply degenerate ground states.

As we decrease the inductance of the shunts, states with
circulating currents move up in energy, and hence the ground-
state degeneracy is lifted. In other words, larger β corresponds
to less degeneracy. In the absence of stray inductors, all even-
order terms (beyond second order) in HJRM become zero when
the external magnetic flux bias is set to 2π . We find that
at this flux bias the ground state is nondegenerate for β >

1.0 (minimum requirement for operation of the nulled JPC).
Additionally, we find that the ground state is nondegenerate
for all values of the magnetic flux bias when β > 4.0.

Next, we take stray inductance into account. The stray
inductors increase the inductance of the segments of the

FIG. 6. (a) The degeneracy of the ground state without stray inductance. In this figure, we sweep the shunt parameter β and external
magnetic flux φ. The blue, orange, and red regions show the parameter regimes that the JRM ground state is nondegenerate, twofold degenerate,
and fourfold degenerate, respectively. The nondegenerate regime is considered as stable. The red, blue, and black lines show the phase
boundaries between stable and twofold regions, stable and fourfold regions, and twofold and fourfold regimes, respectively. Also, without
stray inductance, all nulling points are at ±2π . (b) The JRM’s ground-state degeneracy with stray inductors. We fix β = 4.5, and calculate the
ground-state degeneracy as we sweep the stray parameter α and external magnetic flux ϕext. The green line in panel (b) shows the position of
the nulling point. The nulling point shifts (denoted by the green line) to higher external magnetic flux as we increase the stray parameter α and
finally hit the unstable regime. (See discussion in the main text.)
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FIG. 7. (a) The circuit diagram for the shunted JRM. There are four normal modes of the circuit, labeled as ϕa, ϕb, ϕc, and ϕm.
(b) Eigenmodes: The modes ϕa,b,c are nontrivial. When capacitances C1 to C4 are identical, the mode profiles are sketched.

outer ring of the JRM, effectively decreasing β (as com-
pared to the case α = 0). In Fig. 6(b), we fix β = 4.5
(close to our experimental parameters) and sweep the pa-
rameter α and external magnetic flux ϕext. We notice that
as we increase α, the region of degenerate ground states

reappears (near maximal magnetic flux bias). Further, we
observe that as we increase α the Kerr nulling point
moves from ϕext = 2π toward ϕext = 3.5π , at which point
it hits the degenerate ground-state region (corresponding to
α ≈ 0.4).

APPENDIX B: THE EIGENMODES OF THE JPC

In this subsection, we discuss the JPC circuit and identify its eigenmodes. The effective circuit diagram without input-output
connections is shown in Fig. 7(a). In order to simplify our analysis, we begin by making the assumption that Lshunt → 0. We will
lift this assumption at the end.

In order to find the eigenmodes of the JPC, we construct the equations of motion (EOM) by applying Kirchhoff’s law to
the circuit. We follow the standard prescription for superconducting circuits: relating voltage to the normalized flux (i.e., the
superconducting phase) on each of the nodes via

ϕ̇ j = 1

φ0
Vj (t ) ⇔ ϕ j (t ) = 1

φ0

∫ t

−∞
[Vj (t

′)]dt ′ (B1)

and the supercurrent to the normalized flux via

Jj = 1

φ0

∂HJRM

∂ϕ j
, (B2)

where φ0 = h̄/(2e) is the reduced magnetic flux quantum. The resulting equations of motion are

2C1φ
2
0 ϕ̈1 + EJ

[
sin

(
ϕ1 − ϕ2 + ϕext

4

)
− sin

(
ϕ4 − ϕ1 + ϕext

4

)]
+ φ2

0

Lshunt
(ϕ1 − ϕ5) = 0,

2C4φ
2
0 ϕ̈2 + EJ

[
sin

(
ϕ2 − ϕ3 + ϕext

4

)
− sin

(
ϕ1 − ϕ2 + ϕext

4

)]
+ φ2

0

Lshunt
(ϕ2 − ϕ5) = 0,

2C2φ
2
0 ϕ̈3 + EJ

[
sin

(
ϕ3 − ϕ4 + ϕext

4

)
− sin

(
ϕ2 − ϕ3 + ϕext

4

)]
+ φ2

0

Lshunt
(ϕ3 − ϕ5) = 0,

2C3φ
2
0 ϕ̈4 + EJ

[
sin

(
ϕ4 − ϕ1 + ϕext

4

)
− sin

(
ϕ3 − ϕ4 + ϕext

4

)]
+ φ2

0

Lshunt
(ϕ4 − ϕ5) = 0,

ϕ5 = 1

4
(ϕ1 + ϕ2 + ϕ3 + ϕ4).

(B3)

We can linearize the EOMs by expanding around the minimum energy configuration of the JRM (that we found in previous
section). We now focusing on the nondegenerate configurations of interest: ϕ1 = ϕ2 = ϕ3 = ϕ4 = ϕ5 = 0. In this case, ϕi’s can
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be regarded as small perturbations away from the JRM minimum point. The resulting linearized equations of motion are

ϕ̈1 + EJ

2C1φ
2
0

cos
(ϕext

4

)
[2ϕ1 − ϕ2 − ϕ4] + 1

8C1Lshunt
(3ϕ1 − ϕ2 − ϕ3 − ϕ4) = 0,

ϕ̈2 + EJ

2C4φ
2
0

cos
(ϕext

4

)
[2ϕ2 − ϕ3 − ϕ1] + 1

8C4Lshunt
(3ϕ2 − ϕ1 − ϕ3 − ϕ4) = 0,

ϕ̈3 + EJ

2C2φ
2
0

cos
(ϕext

4

)
[2ϕ3 − ϕ4 − ϕ2] + 1

8C2Lshunt
(3ϕ3 − ϕ1 − ϕ2 − ϕ4) = 0,

ϕ̈4 + EJ

2C3φ
2
0

cos
(ϕext

4

)
[2ϕ4 − ϕ1 − ϕ3] + 1

8C3Lshunt
(3ϕ4 − ϕ1 − ϕ2 − ϕ3) = 0.

(B4)

Making the additional assumption that C1 = C2 and C3 = C4, we find that the resulting eigenvalue and eigenstate pairs are

ω2
0 = 0 {1, 1, 1, 1}, (B5)

ω2
a = EJ

C1φ
2
0

cos
(ϕext

4

)
+ 1

2C1Lshunt
{1, 0,−1, 0}, (B6)

ω2
b = EJ

C3φ
2
0

cos
(ϕext

4

)
+ 1

2C3Lshunt
{0, 1, 0,−1}, (B7)

ω2
c =

(
1

C1
+ 1

C3

)[
EJ

φ2
0

cos
(ϕext

4

)
+ 1

4Lshunt

] {C3,−C1,C3,−C1}√
C2

1 + C2
3

, (B8)

where ω0 is a zero mode that does not couple with the rest of the modes in the Hamiltonian. The nontrivial modes ϕa, ϕb, and ϕc

are sketched in Fig. 7(b).
We now put the stray inductors back into the circuit. In doing so, we introduce four nodes between the stray inductors and the

Josephson junctions on each arm. Because there are no kinetic terms associated with these nodes (as we neglect the capacitances
to these nodes), the resulting Kirchhoff equations give us four more constraints:

EJ

φ0
sin

(
ϕ j − δ j + ϕext

4

)
= φ0

Lout
(δ j − ϕ j+1), (B9)

where δ j is the phase at the node between the stray inductor and the Josephson junction on the jth arm of the JRM (see Fig. 2).
In order to linearize the equations of motion, we must first find the values of δ js at the minimum energy configuration of the

JRM. These correspond to the solution of the transcendental equation

EJ

φ0
sin

(
−δ

(0)
j + ϕext

4

)
= φ0

Lout
δ

(0)
j . (B10)

We set � = −δ
(0)
j + ϕext

4 and use Eq. (B9) to obtain an expression for the first order correction to δ j in terms of ϕ j and ϕ j+1:

δ
(1)
j = ϕ jα cos(�) + ϕ j+1

1 + α cos(�)
. (B11)

We now eliminate δ
(1)
j from the linearized equations of motion to obtain

¨δϕ1 + EJ

2C1φ
2
0

cos �

1 + α cos �
(2δϕ1 − δϕ2 − δϕ4) + 1

8C1Lshunt
(3δϕ1 − δϕ2 − δϕ3 − δϕ4) = 0,

¨δϕ2 + EJ

2C4φ
2
0

cos �

1 + α cos �
(2δϕ2 − δϕ1 − δϕ3) + 1

8C4Lshunt
(3δϕ2 − δϕ1 − δϕ3 − δϕ4) = 0,

¨δϕ3 + EJ

2C2φ
2
0

cos �

1 + α cos �
(2δϕ3 − δϕ2 − δϕ4) + 1

8C2Lshunt
(3δϕ3 − δϕ1 − δϕ2 − δϕ4) = 0,

¨δϕD + EJ

2C3φ
2
0

cos �

1 + α cos �
(2δϕ4 − δϕ1 − δϕ3) + 1

8C3Lshunt
(3δϕ4 − δϕ1 − δϕ2 − δϕ3) = 0.

(B12)

Comparing Eqs. (B4) and (B12), we observe that the effect of stray inductors is a renormalization of the Josephson energy
EJ → EJ

cos �
1+α cos �

. This renormalization results in a shift of the eigenfrequencies but the eigenmodes remain identical.
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FIG. 8. (a) Visualization of how to measure self-Kerr. We prepare a pump tone that is five times the linewidth away from the mode
frequency and observe the shift of the mode frequency. (b) Visualization of how to measure cross-Kerr. Similarly, for the cross-Kerr, we
monitor the change of mode frequency on mode a while varying the strength on the pump tone which is five linewidths away from mode b.
(c) Effective Kerr terms. We fit the data acquired in this protocol to a polynomial function of applied drive power, and the linear coefficient
of the function, which we recorded as MHz/Watt of driving power at room temperature, is proportional to the relevant Kerr term of the
Hamiltonian.

APPENDIX C: MEASUREMENT OF KERR TERMS

We need to quantify the strength of the Kerr terms inherent
to our amplifier in order to find when they go to zero. To
do this, we perform self-Kerr and cross-Kerr duffing sweeps
across a wide range of flux. The self-Kerr terms, a†aa†a
and b†bb†b, can be measured by applying a strong pump
tone five linewidths (here 125 MHz from the mode a and
100 MHz from the mode b) away from the respective resonant
frequencies as shown in Fig. 8(a). We then sweep the flux and
the pump power and measure the detuning from the resonant
frequencies. In Fig. 2(c), we plot negative detuning in red and
positive in blue which allows us to quickly identify where
these terms go to zero, since zero detuning, representing
no fourth-order effects, is plotted in white. The cross-Kerr,
a†ab†b, is measured similarly, but this time we apply a tone
five linewidths away from the mode a and measure the effect
of the mode b, as seen in Fig. 8(b). With a high enough
pump power, it becomes easy to distinguish the red and blue
regions, and thus, the crossing zone in the middle where the
specific fourth-order term goes to zero. This flux bias point
as shown Fig. 2(c), is represented by a dotted black line.
For each bias current result, we can fit it to the polynomial
function and the linear term of the fitting result is proportional
to the Kerr. By fitting all bias currents, all Kerr terms as a

function of the bias current can be extracted and is shown in
Fig. 8(c).

Our recent work in Ref. [32] has complicated this picture.
When the geometric inductance introduced from microstrips
that form the λ/2 resonators is taking into account, nulling
points for the self- and cross-Kerrs appear at slightly different
points. Moreover, the dynamic Kerr which is generated by
strong pump tones also affects the measurement of Kerr [17].
However, we can still use this method and identify the best
operating point where all Kerr terms are minimized.

APPENDIX D: BACK-ACTION ON THE QUBIT
FOR WEAK AMPLIFICATION

In addition to being an essential component to the mea-
surement chain used to read out superconducting qubits,
parametric amplification can be used to manipulate them as
well. For instance, the back-action associated with parametric
amplification can perform the essential function of remotely
entangling distant qubits. It can also be used as an accurate,
self-calibrating way to determine measurement efficiency.
These types of measurements will be vital in identifying and
eliminating the effects which limit our ability to manipulate
quantum systems.

FIG. 9. (a) Histogram of weak measurement protocol with optimal alignment (I quadrature amplified) to determine quantum efficiency
of the GC amplifier. Each plot contains 80 000 measurements. [(b)–(d)] Conditional expectation values of X/Y/Z after weak measurement
plotted vs measurement outcomes. These plots show how an optimally aligned measurement provides a “kick” around the Y -Z plane of the
Bloch sphere.
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FIG. 10. Pulse sequence for quantifying measurement back-action. We first strongly read out the qubit and record the outcome, which
will be used to prepare the qubit in the ground state by postselection. Then, the qubit is rotated by the +y axis and measured with a variable
measurement strength, and the outcome is recorded. The final tomographs, phase measures the x, y, or z component of the qubit Bloch vector
with a strong measurement pulse.

In Fig. 5, we apply second measurement strength to be five
times (in voltage) smaller than that of strong measurement
while GC is operated at orthogonal phase. The histogram
shows sinusoidal oscillation in both X and Y are a nonclassical
stochastic Ramsey processes. The expectation value of Z is
affected by qubit’s relaxation and leads to the slightly red
color instead of complete white. With the same procedure
but squeezing the Q quadrature instead, we change the qubit’s
motion to be confined to the Y -Z plane; see Fig. 9.

The standard way to perform back-action measurement is
shown in Fig. 10. We first strongly read out the qubit and
record the outcome, which will be used to prepare the qubit in
the ground state with state selection. Then the qubit is rotated
by the +y axis and measured with a variable measurement
strength, and the outcome is recorded again. For the final
tomography, phase measures the x, y, or z component of the
qubit with a strong measurement pulse.

If we take the qubit to originally be oriented along the Y
axis and the I quadrature to be perfectly squeezed, the back-
action corresponds to stochastic, trackable motion of the qubit
state in the x-y plane, with the extent of the motion varying
with the strength of the measurement. For weak strength, the

FIG. 11. Saturation power. The saturation power of our GC
device at around 14 dB is measured. P-1dB is around −130 dBm.

back-action looks like a stochastic rotation in the x-y plane
with the degree of rotation encoded in Qm.

APPENDIX E: SATURATION POWER

The amplifier’s saturation behavior was measured as shown
in Fig. 11. Although operated with much higher pump powers,
this dynamic range is virtually identical to singly pumped
phase-preserving and phase-sensitive gain at the same Kerr
nulling point. This points to conventional pump depletion not
limiting the device. In a separate work, we have concluded
that still higher order nonlinearities can contribute strongly to
gain saturation and must be controlled to realize amplifiers
with superior dynamic range [32].

APPENDIX F: GAIN VERSUS PUMP POWER

Here we record the pump power used to achieve gain
on resonance for different parametric processes, as shown
in Fig. 12. The pump power is normalized to the critical
power, P∞, which point where the gain of a singly pumped,
phase-preserving gain diverges [12]. The curved dashed line
is the single pump process theory prediction that allowed us

FIG. 12. Gain vs pump power. The pump power required to
obtain gain on resonance for a single pump and GC amplification
processes.
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to extract P∞. The red dots are the experimental pump power
applied to the device for different gains. In contrast, the linear
dashed line is the prediction of GC amplification as a function
of pump power for individual (matched) pumps G and C.

We note it shows no divergence. For 5-dB GC gain, G and
C pump strength have to be about P∞. To reach 20-dB GC
gain, each pump power has to be around 10 times stronger
than P∞.
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