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Microwave parametric amplifiers based on Josephson junctions have become indispensable

components of many quantum information experiments. One key limitation which has not been

well predicted by theory is the gain saturation behavior which limits the amplifier’s ability to

process large amplitude signals. The typical explanation for this behavior in phase-preserving

amplifiers based on three-wave mixing, such as the Josephson Parametric Converter, is pump

depletion, in which the consumption of pump photons to produce amplification results in a reduc-

tion in gain. However, in this work, we present experimental data and theoretical calculations

showing that the fourth-order Kerr nonlinearities inherent in Josephson junctions are the dominant

factor. The Kerr-based theory has the unusual property of causing saturation to both lower and

higher gains, depending on bias conditions. This work presents an efficient methodology for opti-

mizing device performance in the presence of Kerr nonlinearities while retaining device tunability

and points to the necessity of controlling higher-order Hamiltonian terms to make further improve-

ments in parametric devices. Published by AIP Publishing. https://doi.org/10.1063/1.5003032

Quantum-limited amplifiers are a vital tool in quantum

information processing. At microwave frequency, such ampli-

fiers enable high-fidelity measurements of quantum bits,1,2

nano-mechanical resonators,3 and flying states of light.4 The

amplifiers are typically built from microwave resonators con-

taining one or more superconducting Josephson junctions,

which provide the essential non-linear Hamiltonian terms and

hence their collective description as Josephson Parametric

Amplifiers (JPAs).5–12 The strength of the non-linear coupling

between the device’s modes is controlled via an external

microwave pump, which in turn sets the amplifiers’ gain and

center frequency.

A JPA’s utility is determined by several parameters.

These include its quantum efficiency, which describes the

noise added during amplification,13 tunability to match the

signal frequency of interest, instantaneous bandwidth,14,15

and the ability to process large amplitude signals. The last

parameter is typically referred to as the saturation power or

more precisely as P–1dB, the input power at which the gain

falls by 1 dB from its small signal value. Conventionally, sat-

uration in JPAs is attributed to depletion of photons from the

microwave pump tone.16–18 The pump both controls the

amplifier gain and serves as the power source for photons

created in the amplification process, resulting in a monotonic

decrease in gain with increasing signal power.

However, pump depletion has, in almost all cases, failed

to give an accurate description of experimental device perfor-

mance.16,17 In this letter, we show that, instead, Kerr nonlinear-

ities inherent to Josephson junctions are the dominant factor

that limits device saturation power. Our results give good qual-

itative agreement between a theory which completely neglects

pump depletion and experimental data for phase preserving

amplification in the Josephson Parametric Converter

(JPC).19,20 We find that for typical device parameters, the Kerr

terms of the Hamiltonian cause the system to dispersively shift

away from its bias point before the effects of pump-depletion

become relevant.

Given this understanding, we present a methodology for

optimizing device performance in the presence of Kerr nonli-

nearities while retaining device tunability. Although in this

paper we specifically study amplifiers based on three-wave

mixing with the Josephson Ring Modulator (JRM),16 this

effect will be equally prominent in three-wave mixing devi-

ces based on SQUIDS or other multi-junction circuits with

similar-amplitude Kerr terms.21 We note that a related effect

has been studied theoretically for the case of single junction

four-wave mixing based amplifiers.22

The JPC realizes non-degenerate three-wave mixing

with a ring of four nominally identical Josephson junctions

(the JRM), placed at the intersection of two k/2 resonators

(see Fig. 1). The horizontal mode is referred to as the idler or

a-mode, while the vertical mode is the signal or b-mode.

There is a third, common mode, c, consisting of a joint exci-

tation of the horizontal and vertical spatial modes. The idler

and signal mode are each strongly coupled to a single micro-

wave port accessible through transmission lines with decay

rates ja,b, while the pump tone is coupled to the c mode via a

weakly coupled pump port. The device tunability is

enhanced by the addition of four interior junctions, which

are much larger than the outer junctions that produce the

three-wave mixing and as such are treated as linear induc-

tors.23 Up to third order in creation/annihilation operators,

the Hamiltonian of the JPC in the rotating wave approxima-

tion can be written as19

HJPC

�h
¼ xaa†aþ xbb†bþ xcc†cþ gða†b†cþ abc†Þ; (1)

where a, b, and c are the annihilation operators of the three

modes of the JPC, and g is the flux-dependent three-wave

coupling strength. Gain is achieved by applying a strong

microwave drive to spatial mode c at the frequency xp’xa

þxb. If this is strongly detuned from any c-mode resonance,a)hatridge@pitt.edu.
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the pump is said to be “stiff,” meaning that c can be replaced

with its average value. In this letter, we calculate the average

response of the amplifier using semi-classical Langevin

equations derived from the circuit Hamiltonian, together

with the modes’ coupling rates to the microwave environ-

ment (see supplementary material, Sec. I).

The flux dependence of the mode frequencies xa,b

allows amplification over a wide range of frequencies by

varying the flux applied to the JRM. At a fixed flux, the

amplifier can be further tuned over a narrower range of fre-

quencies, roughly corresponding to mode bandwidths ja,b,

by varying the pump frequency away from the sum fre-

quency by �, so that xp¼xaþxbþ �. Note that for each

pump frequency, there is a unique peak gain frequency

which depends on both the pump detuning and the mode

bandwidths. For ja,b¼j 7Dj/2, the peak gain frequency

(for mode a) can be written to first order in � and Dj as

xmaxG ¼ xa þ 1
2
� jDj=2

4g2hci2þj2þðDj=2Þ2
� �

� (see supplementary

material, Sec. I).

In the JPC Hamiltonian, the 4th order (Kerr) nonlinear-

ity, which is typically neglected in Eq. (1), is

HKerr

�h
¼ �

Xc

m¼a

Xc

n¼m

Kmna†
mama†

nan; (2)

where ai¼ (a, b, and c) and Kmn are the Kerr amplitudes (see

supplementary material, Sec. II). Given the stiffness of the

pumped c mode, the Kcc term is a constant for a given set of

pump conditions and can be neglected, leaving five terms to

be considered. Of these, the Kac and Kbc are simplified by the

stiff pump approximation to be pump-dependent Stark shifts

of the a and b modes. Their effect is visible even at very low

signal power as they shift the optimal pump frequency

(defined as the frequency requiring minimum pump power

for achieving a given gain for very low signal powers) to be

smaller than the sum frequency of the a and b modes.

The final three terms, Kaa, Kbb, and Kab, grow with sig-

nal power and give a further nonlinear contribution to the

amplifier response. Their contributions are largely indistin-

guishable, as the process of phase-preserving amplification

results in very tightly correlated a and b mode populations.24

The increasing signal amplitude causes the coupled modes to

shift to lower resonant frequencies and increased nonlinear

response as a function of signal power, reminiscent of the

behavior of single mode Duffing oscillators.25,26 In general,

we can only solve these equations numerically: to gain an

intuitive picture of the system’s behavior as a function of sig-

nal power, we calculate the pump power which gives fixed

power gain G at different pump frequencies for varying sig-

nal powers (see supplementary material, Sec. II). The results

are shown in Fig. 2(a) where there is an apparent shift of the

curve to lower frequencies and higher pump powers as the

coupled modes dispersively shift away from the pump tone.

All experimental data were taken from a single-ended

JPC shown schematically in Fig. 1. The need for hybrids to

couple symmetrically to the a and b modes has been elimi-

nated. The resulting asymmetry between the two ends of the

resonators shifts the current anti-nodes away from the JRM

FIG. 1. Schematic of a single-ended Josephson Parametric Converter (JPC)

circuit. The device consists of two k/2 resonators which meet at a central

ring of Josephson junctions, the JRM. The horizontal (red) mode is labeled

a, the vertical (blue) mode b, and there is a third, common mode c of the

two arms. Resonant modes a and b are each strongly coupled to a single

microwave port, and the pump is weakly coupled via the pump port. (Inset)

Image of assembled JPC. The a and b modes and pump port are each

accessed through individual SMA connectors.

FIG. 2. (a) 20 dB gain curve for different signal powers. (b) Maximum gain vs. pump detuning [xp – (xaþxb)] and power for �150 dBm signal power. Each

pixel represents the fitted maximum gain for a pump power/detuning combination. The red line connects all the 20 dB points obtained from fitting gain data at

each pump detuning vs pump power (see inset for example fit curve). (c) Experimental G¼ 20 dB points versus pump detuning and power for varying signal

powers.
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and results in leakage between modes a and b. We correct

this effect by introducing an offsetting asymmetry (g) in the

length of the two arms of each resonator as indicated in the

figure. The device is fabricated using double-angle alumi-

num deposition of Josephson junctions and resonator on sili-

con together with a 1.5 lm silver ground plane on the

reverse side. The critical current for the outer junctions is

1.78 lA and for the inner junctions is 5.34 lA. The modes a,

b, and c are each accessed through individual SMA connec-

tors (see Fig. 1 inset).

For all data, an external DC magnetic flux, Uext¼ 1.2

U0, was applied, where U0¼ h/2e is the magnetic flux quan-

tum and we define the flux as applied to the full JRM (which

with its four loops is periodic with 4U0 total applied flux). At

this flux, the resonant frequencies of modes a and b are xa/

2p¼ 5.083 GHz and xb/2p¼ 7.452 GHz, and the linewidths

are ja/2p¼ 20 MHz and jb/2p¼ 56 MHz. We first identified

the combination of pump powers and frequencies yielding

G¼ 20 dB, as shown in Fig. 2(b). For each pixel, a pump

power and frequency combination was applied to the pump

port, and the small-signal response for Psig¼ –150 dBm was

recorded. Each curve was first fitted to identify the maximum

gain and associated signal frequency. We found that the

most accurate bias conditions were identified by subse-

quently fitting all peak-gain points at a given pump fre-

quency to the expect response of G vs. Pp, as shown in the

inset. Compared to Fig. 2(a), the pump power needed for

20 dB gain increases more rapidly with pump detuning in the

data, which is due to impedance variation of the external 50

X environment to which the JPC couples.15

Next, we evaluated the influence of increasing signal

power by repeating this protocol for increasing signal pow-

ers, as shown in Fig. 2(c). As the signal power increases, the

amplifier response shifts to lower frequency in excellent

qualitative agreement with the calculated results shown in

Fig. 2(a), including the asymmetry between positive and

negative detunings. For positive detunings, the modes shift

away from the bias point, and thus, higher pump power is

required to maintain 20 dB gain. For negative detunings, the

situation is at first reversed as the modes move closer,

resulting in an initial shift to higher gain before they, too,

fall as the modes continue to shift with increasing signal

power.

This anomalous behavior requires us to modify how we

evaluate saturation; otherwise, we may assign very high satu-

ration powers to an amplifier whose response is extremely

nonlinear. A more symmetric limit of P61dB, defined as the

power at which the gain first deviates in either direction by

1 dB from its small signal value, will give a much fairer com-

parison of different bias conditions.

The amplifier’s saturation behavior was measured as

shown in Fig. 3. For each pump frequency, we recorded gain

vs. signal power while using the pump power and signal fre-

quency determined in Fig. 2(b). The full dataset is shown in

Fig. 3(b); for clarity, representative curves are plotted sepa-

rately in Fig. 3(a). The calculated saturation curves using

extracted device parameters (see supplementary material, Sec.

II) are plotted in Fig. 3(c). For both data and calculation, the

gain initially increases with signal power at negative detuning

before finally falling, and for positive detunings, the gain

monotonically decreases. The 61 dB saturation values are

indicated by blue diamonds and red triangles, respectively.

At positive detunings, the P–1dB limit is reached first, in

both theory and experiment, eventually leveling off at a

value 5–10 dB lower [Fig. 3(a) blue and purple data] than the

optimal monotonically decreasing gain point [Fig. 3(a) in

green], which is found very near the small-signal resonant

condition. For negative detunings, the gain rise phenomenon

becomes increasingly severe [Fig. 3(a) in red], eventually

resulting in unstable/hysteretic gain conditions (not shown).

However, for modestly negative detuning, the gain rise phe-

nomenon can act to enhance the saturation power. Thus, we

identify an alternate optimum bias condition [Fig. 3(a) in

orange] which rises to just less thanþ1 dB before falling.

Taken together, these factors can result in amplifier perfor-

mance that varies by well over 10 dB if the amplifier is

biased without knowledge of the Kerr effect. As most ampli-

fiers operate over a modest range of bandwidths (10s–100s

of MHz) and critical currents (few lA), these behaviors

should be visible in all devices and are, in fact, visible in

FIG. 3. (a) Measured reflection gain of the JPC vs. signal power at selected pump detunings, showing the variation in saturation response vs pump detuning

from the resonant condition. (b) Measured gain vs. signal power and pump detuning for 20 dB bias conditions identified in Fig. 2(b). The colored arrows indi-

cate the dynamic range curves in (a). (c) Calculated theoretical gain at different signal powers and pump detunings. In both (b) and (c), the saturation values

are indicated as red triangles (–1 dB) and blue diamonds (þ1 dB).
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previously published data (for example in Ref. 16). The dis-

crepancy between the measured saturation power and the

calculated values is mainly due to uncertainty in the energy

participation ratios which determine the Kerr coefficients

used in the calculation [Eqs. (S4), (S14), and (S15) in the

supplementary material].

Gain saturation is summarized in Fig. 4, colored by

which limit (61 dB) is reached first. For positive detuning,

the P–1dB (red triangles) limit is relevant and falls to a static

value even as Pp continues to climb for increased detuning.

For negative detuning, the Pþ1dB (blue diamonds) behavior

is limiting and falls steadily with increasing Pp as the ampli-

fier’s response becomes increasingly distorted. The two opti-

mum points are circled, and both are near the lowest pump

powers, in direct contradiction to the expectations of pump

depletion theory that bias conditions requiring stronger

pump should yield higher saturation powers.

We note that although this result suggests that the JPC

possesses only one best bias point for each bias flux, by

jointly varying the pump frequency and flux, the device

should be no less tunable. In fact, our result suggests that the

device can be readily tuned by jointly varying flux and pump

frequency to minimize the pump power required for a given

signal frequency. Finally, we add a caution that this picture

can be severely disrupted by variation in the impedance pre-

sented by the microwave lines connected to the device

modes, unless great care is taken to minimize reflections and

mismatches in the microwave cabling. In our experiment,

this is the dominant source of disagreement between theory

and experiment, as the device bandwidth is observed to vary

significantly for the range of frequencies at which we

recorded gain data. However, at all bias points, the overall

behavior of Kerr-based shifts to lower frequencies dominated

the device performance and allowed us to identify optimal

bias conditions.

In conclusion, we have developed a theoretical treat-

ment which neglects the dynamics and depletion of the

microwave pump and focuses on the fourth-order Kerr terms

as the source of amplifier saturation. Our data and calcula-

tions are in excellent qualitative agreement, and we identify

an efficient paradigm for operating three-wave parametric

amplifiers in the presence of Kerr nonlinearity. Our results

also have vital implications for recent efforts to build multi-

parametric Josephson devices, such as directional amplifiers

and circulators.21,27–29 These devices require the delicate

matching of several parametric processes spanning multiple

modes, providing a very difficult challenge to tune up if the

modes themselves move with changing pump conditions.

The fourth-order theory can be readily extended to these

devices and will provide much needed insight into both bias

conditions and saturation behavior.

However, to make substantial improvements in device

performance, we must eliminate unwanted higher-order

terms through Hamiltonian design. We calculate that a

reduction in Kerr term amplitude translates to an equal

increase in saturation power until either pump depletion or

the sixth-order terms dominate the device response. There

has been a very recent effort to achieve such a reduction by

using an asymmetric flux-biased Josephson circuit (the so-

called “SNAIL”) to replace the individual junctions in the

JRM.30

See supplementary material for the details of the JPC

dynamics with only 3rd order couplings and with both 3rd

and 4th order couplings.
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