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Josephson parametric amplifiers (JPA) are nonlinear devices that are used for quantum sensing and qubit
readout in the microwave regime. While JPAs regularly operate near the quantum limit, their gain saturates for
very small (few-photon) input power. In a previous work, we showed that the saturation power of JPAs is not
limited by pump depletion, but instead by the fourth-order nonlinearity of Josephson junctions, the nonlinear
circuit elements that enables amplification in JPAs. Here, we present a systematic study of the nonlinearities
in JPAs, show which nonlinearities limit the saturation power, and present a strategy for optimizing the circuit
parameters for achieving the best possible JPA. For concreteness, we focus on JPAs that are constructed around
a Josephson ring modulator (JRM). We show that by tuning the external and shunt inductors, we should be able
to take the best experimentally available JPAs and improve their saturation power by ~15 dB. Finally, we argue
that our methods and qualitative results are applicable to a broad range of cavity-based JPAs.
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I. INTRODUCTION

Amplification is a key element in quantum sensing and
quantum information processing. For example, readout of su-
perconducting qubits requires a microwave amplifier that adds
as little noise to the signal as possible [1], ideally approaching
the quantum limit [2—4]. Recently, low-noise parametric am-
plifiers powered by the nonlinearity of Josephson junctions
have been realized and are in regular use in superconducting
quantum information experiments [5—14].

To evaluate the performance of a practical parametric
amplifier, there are three aspects that are equally important:
(1) added noise at the quantum limit [4,8—11,15], (2) broad-
band amplification [15-19], and (3) high saturation power
[9,20-26], i.e., the ability to maintain the desired gain for a
large input signal power [27]. The last requirement has been
especially hard to achieve in Josephson parametric amplifiers
and will be the focus of this paper.

In previous works on Josephson parametric amplifiers,
it was assumed that saturation power is limited by pump
depletion [9,20-22,26]. This is a natural explanation, as the
amplifier gain is a very sensitive function of the flux of the
applied pump photons. Thus, as the input power is increased
and more pump photons are converted to signal photons, the
gain falls. However, in Refs. [23-25,28] it was pointed out that
the fourth-order nonlinear couplings (i.e., the Kerr terms), in-
herent in Josephson-junction-based amplifiers, can also limit
the saturation power. These terms induce a shift in the mode
frequencies of the amplifier as a function of signal power,
which can cause the amplifier to either decrease or increase
its gain. Thus, we adopt the definition of saturation power
as the lowest input power that causes the amplifier’s gain to
either increase or decrease by 1 dB, which we abbreviate as

Piygp.
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In this paper, we address the question: For a given de-
vice, does pump depletion, Kerr terms, or higher order non-
linearities limit the saturation power Pi;gg? How do we
tame these limitations to optimize the device by maximizing
P11gg? Our analysis and results are generally applicable for
all amplifiers based on third-order couplings, including JPAs
based on superconducting nonlinear asymmetric inductive el-
ements (SNAILs) [25,29-31], flux-pumped superconducting
quantum interference devices (SQUIDs) [7,32-35], and the
Josephson parametric converters (JPCs) [8,9,21,24,36]. These
techniques we develop may also be of use in the simulation
of non-cavity-based amplifiers, such as the traveling-wave
parametric amplifier (TWPA) [37-39].

In the JPC, three microwave modes (a, b, and c) are coupled
via a ring of four Josephson junctions [the so-called Josephson
ring modulator (JRM); see Fig. 2(b) shaded part, for example].
A third-order coupling (g3¢.@p@.) between the fluxes (¢;)
of three microwave modes is obtained by applying a static
magnetic flux to the JRM ring. Phase-preserving gain is
obtained by pumping one mode (typically c) far off resonance
at the sum frequency of the other two (a and b), with the gain
amplitude being controlled by the strength of the pump drive.

We now discuss the main results of our investigation,
which are summarized in Fig. 1. Previously, descriptions of
JPC’s relied on expanding the nonlinear couplings between
the three microwave modes in a power series of cross- and
self-couplings. The power series was truncated at the lowest
possible order, typically fourth (i.e., corresponding to the
cross- and self-Kerr terms) [9,11,17,24]. In the present paper,
we compare these power series expansions with the exact
numerical solutions in the framework of semiclassic input-
output theory. Our first main finding is that there is indeed a
sweet spot for operating a JPA [see Fig. 1(a)], at which Py 4
is maximized. The sweet spot appears for moderate values of

©2020 American Physical Society


https://orcid.org/0000-0002-6788-140X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.042323&domain=pdf&date_stamp=2020-04-21
https://doi.org/10.1103/PhysRevA.101.042323

LIU, CHIEN, HATRIDGE, AND PEKKER PHYSICAL REVIEW A 101, 042323 (2020)

- P41 4p(dBm) .
10t (@) 10¢ (b) |
Unable to reach B Unable to reach
8t 20 dB gain with -110 8t 20 dB gain with
weak signal weak signal
g 15
-120
4t 4t
-125
2( 2
2 4 6 &8 10 12 14 2 4 6 8 10 12 14
1/p 1/p

FIG. 1. The saturation power for the JRM-based Josephson parametric amplifier with various JRM inductance ratio g and participation
ratio p is shown in panel (a). The amplifier has a sweet spot, in which saturation power is maximal, in the low-$ and intermediate-p regime.
Optimizing B and p, we find saturation power of Py g5 ~ —104.8dBm at 8 =~ 3.5, 1/p ~ 7.0. For small p and large B, the amplifier is not
able to reach the desired reflection gain (of 20 dB); this region is labeled in white. In the intermediate-p regime (1/p ~ 4 to 10), as we lower S,
the saturation power first increases, hits the sweet spot, and then abruptly drops. To understand this behavior, we refer to Fig. 9(a), which shows
that the gain at large signal powers tends to increase as 8 decreases. This trend is at first beneficial to the amplifier, as the gain vs signal power
curve flattens out. However, at even lower S, the gain tends to increase with signal power (a feature that we call the “shark fin”), resulting in the
amplifier saturating to 21 dB [see Fig. 9(a), B = 3 curve) and hence the saturation power abruptly decreasing. The sweet spot of the saturation
power is located at the edge of the this “reflection gain boost” regime. In panel (b), we show the minimum truncation order needed to converge
small-signal reflection gain of the amplifier to 20 = 0.3 dB. In our main text, we show that the convergence order of small-signal reflection
gain gives a good prediction on the convergence order of the saturation power [see Figs. 9(b) and 9(c)]. In the small-8, large-p corner, the
third-order truncation is enough to make the time solver converge to the desired 20 dB reflection gain. While as we decrease the participation
ratio, increasingly higher orders are needed to converge the truncated theory, which shows that the full-order simulation is needed to predict

the performance of the amplifier near the sweet spot.

the two circuit parameters: participation ratios p ~ 1/7 and
shunt inductance (8 = Lj/Li, ~ 3.5, where L, is the shunt in-
ductance, Ly = ¢y/Ij is the Josephson inductance, ¢y = %/2e
is the reduced flux quantum, and I is the Josephson junction
critical current). Our second main finding is that in the vicinity
of the sweet spot nonlinear terms up to at least seventh order
are comparable in magnitude and hence truncating the power
series description at fourth order is invalid; see Fig. 1(b). The
second main result can be interpreted from two complemen-
tary perspectives. First, the sweet spot corresponds to high
pump powers and hence the energy of Josephson junctions
cannot be modeled by a harmonic potential anymore. Second,
different orders of the power series expansion have either
a positive or a negative effect on the gain as a function of
signal power; when the magnitudes of terms at different orders
are comparable, the terms cancel each other, resulting in a
boost of Pyigg. We hypothesize that the second main finding
is a generic feature for Josephson-junction-based parametric
amplifiers.

Before moving to a detailed development of our theory, we
provide a summary of the key steps of our investigation and
outline the structure of our paper.

We begin by noting that in addition to the above-mentioned
parameters p and B, the magnetic flux through the JRM
Gext = (27 /o) Dexe 18 another important control parameter.
For conventional JRMs [8,9], at nonzero values of applied
flux there are nonzero cross- and self-coupling at all orders

(fourth, fifth, etc.). However, we have recently realized that
a linearly shunted variant of the JRM [11,17] can null all
even-order couplings at a special flux bias point (@ex = 277),
which we call the Kerr nulling point. The same nulling is also
observed in SNAIL-based devices [29]. In the context of a JPC
with participation ratio p < 1, even couplings come back but
remain much smaller than at generic values of ¢.. Therefore,
throughout this paper, we focus on @y at or in the vicinity of
the Kerr nulling point.

We calculate the saturation power using semiclassical
equations of motion for the microwave modes, which are
derived using input-output theory from the Lagrangian for a
lumped-circuit model of the JPA. When we consider higher
than third-order couplings, these equations are not generally
analytically solvable. To analyze the saturation power for a
given set of parameters, we compare numerical integration
of the full nonlinear equations to solutions of various, artifi-
cially truncated versions of the equations obtained using both
numerical integration and perturbation theory. We begin by
investigating the effects of pump depletion. To do so, we ana-
lyze the dynamics of all the modes with interactions truncated
at third order. Using classical perturbation theory to eliminate
the dynamics of the pump mode (c), we find, in contradiction
with the basic understanding of pump depletion, that the first
corrections are a complex fourth-order cross-Kerr coupling
between modes a and b, and an associated two-photon loss
process in which pairs of a and b photons decay into the
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¢ mode, that effectively increase the pump strength. The
dynamically generated Kerr terms act similarly to the intrinsic
Kerr terms, including giving rise to saturation to higher gain
when the pump mode frequency is positively detuned from the
sum frequency. Further, in the shunted JRM, we can partially
cancel the real part of the dynamically generated Kerr by
tuning the applied flux near the Kerr nulling point so as to
generate an opposite-sign intrinsic Kerr. Thus, the presence of
judicious intrinsic Kerr can be a virtue, and the ultimate pump
depletion limit is set by the imaginary Kerr and two-photon
loss. Increasing the S value of the JRM reduces these effects
and increase the JPCs saturation power. Away from the nulling
point, these depletion effects are overwhelmed by the intrinsic
Kerr effects, and the device is Kerr limited, in agreement with
our previous results.

Next, we perform calculations with full nonlinearity and
find that saturation power stops increasing at high 8. We find
that this is primarily due to certain fifth-order terms of the
form (2 + <p,§)<pa<pb<pc. These terms modulate the effective
parametric coupling strength as a function of the input signal
power, thus shifting the amplifier away from the desired
gain by increasing the effective parametric coupling (in fact,
throughout this work we failed to identify a scenario in which
the amplifier runs out of pump power).

To suppress the strength of these terms relative to the de-
sired third-order coupling, we introduce an additional control
knob by adding outer linear inductors Ly, in series with the
JRM. The participation ratio p = Lyjgrm/(2Lou + Ljrm), Where
Lirm is the effective inductance of the JRM, controls what
fraction of the mode power is carried by the JRM. Decreasing
p results in the suppression of all coupling terms; however,
the higher order coupling terms decrease faster than the lower
order ones. Thus, if the saturation power is limited by intrinsic
fifth-order terms, we can increase the saturation power by
decreasing the participation ratio p. We remark that as the
pump power is increased, the cross-coupling terms result in a
shift of the JPA frequencies that must be compensated, which
we do for each value of p and 8. Tuning both p and 8, we can
find a sweet spot for the operation of the JPC, as discussed
above.

In general, the mode frequencies shift with applied pump
power. This, combined with the fact that JPAs can function
with pump detunings comparable to the bandwidth of the
resonators on which they are based, makes comparing theory
and experiment very complicated. For concreteness, our sim-
ulations vary the applied pump and signal frequencies to iden-
tify the bias condition which requires minimum applied pump
power to achieve 20 dB of gain. These points can be readily
identified in experiments [24]. However, there has been a
recent observation in SNAIL-based JPAs that deliberate pump
detuning can additionally enhance device performance [30]
and serve as an in situ control to complement the Hamiltonian
engineering we discuss in this work.

This paper is organized as follows. In Sec. II, we focus on
the closed model of JPA circuit (without input-output ports).
We start by reviewing the basic theory of circuits with induc-
tors, capacitors, and Josephson junctions in Subsec. Il A. In
Subsec. II B, we include the external shunted capacitors with
JRM and present the normal modes of the JPA circuit model
using Lagrangian dynamics. In Sec. III, we further include

the input-output ports into the circuit model of the JPA and
construct the equations of motion to describe the dynamics
of the circuit. In Sec. IV, we investigate the limitation on
the saturation power of the JPA without external series in-
ductors. Specifically, we analyze the third-order theory using
both numerical and perturbative approaches in Sec. IV C. We
compare these results with the effect of Kerr nonlinearities
in Sec. IVD and identify the dynamically generated Kerr
terms and the two-photon loss processes. Intrinsic fifth- and
higher order nonlinear couplings are investigated in Sec. IV E.
We put these results together in Sec. IVA and identify
which effect is responsible for limiting the saturation power
in different parametric regimes. In Sec. V, we consider the
consequence of the series inductors outside of it. We show
that the series inductors, which suppress the participation ratio
of the JRM, can be used to improve the dynamic range of
the JRM. We discuss how to optimize the saturation power
of the JPA, taking into account both series inductors and full
nonlinearities in Sec. VI. In Sec. VII, we further explore how
the saturation power is affected by the magnetic field bias, the
modes’ decay rates, and stray inductors in series of the Joseph-
son junction in JRM loop. We provide an outlook on the per-
formance of Josephson-junction-based amplifiers in Sec. VIII.

II. EQUATIONS OF MOTION FOR CIRCUITS MADE
OF INDUCTORS, CAPACITORS, AND JOSEPHSON
JUNCTIONS

In this section, we review the theory of lumped circuits
elements. We start from the Lagrangian treatment of single
circuit elements in Subsec. II A. Then in Subsec. II B, we work
on the JRM and the closed JPA circuit model and solved the
normal mode profiles of the JRM.

A. Lagrangian description of linear inductance, Josephson
junctions, and capacitors

The equations of motion (EOM) that describe the dy-
namics of a circuit with Josephson junctions, inductors, and
capacitors can be derived using the formalism of Lagrangian
dynamics, which naturally leads to Kirchhoff’s law. We use
the dimensionless flux on each node of the circuit, ¢;(t) =
% [L Vi(&)dt', as the set of generalized coordinates. The
Lagrangian L[{¢;, ¢;}] is defined as

L =THg;} — Ulle;}l, (D

where T is the kinetic energy associated with the capacitors
and U is the potential energy associated with the inductors
and the Josephson junctions. Using Fig. 2(a) to define the
nodes and current direction for each type of circuit element,
we observe that each capacitor contributes

C
Ec = 5¢3<¢1 —¢)? 2)

to T[{¢;}], while each inductor and each Josephson junction
contributes

E = ‘/’—5«0 — @) 3)
L 2L 2 1 5
Ey = —¢oic cos (¢ — 1), 4)
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FIG. 2. In panel (a), we show the typical circuit elements that we will focus on in this paper, a linear inductor with inductance L, a capacitor
with capacitance C, and a Josephson junction with critical current i.. The node phase and the convention for the current is labeled on each
element drawings. The circuit model for the JRM-based JPA circuit is shown in panel (b). The circuit model for a linear inductance shunted
Josephson ring modulator (JRM) is shaded in red. We connected the linear inductance shunted JRM with the capacitors and the input-output
ports. We assume the normal modes are symmetrically driven by the ports. For the port corresponding to mode ¢,, we use the green arrows
to show the input and output (reflected) current flow direction. For b mode, we only use the green arrow to show the flow direction of the
input current. The connection of the ¢ port is not shown in the plot. The ¢ port also drives the corresponding mode profile symmetrically. The
corresponding normal modes, including three nontrivial modes ¢,, ¢, and ¢, and one trivial mode ¢,, are shown in panel (c).

to U[{¢;}], where i. is the critical current of the Josephson
junctions. The current across a capacitor is —¢l0(8Ec /8¢1) =
%(SEC/ 8¢>), while the current across an inductor is
%(SEL/(S(,D]) = —%(SEL/(S(pz) and across a Josephson junc-
tion 5-(8E;/8¢1) = —;-(8Ey/8¢2). Using the Lagriangian £
of the circuit elements, the current that flows out of each
node of the circuit is J; = —qblo((SL/ 8¢;). To obtain the equa-
tions of motion (EOMs) we extremize the action by setting
Jj = 0, which corresponds to enforcing Kirchhoff’s law.

Next, we apply the Lagrangian formalism to derive the
potential energy of the linear-inductor-shunted JRM, the key
component at the heart of the JPA, shown in Fig. 2(b), which
is shaded in red. The potential energy of the JRM circuit
[40] is

# <

0 2
> (%) — ¢x)
2Lin !

Exrm =

1 ®)

4

— ole ZCOS [§0i+1 —¢i— (pem],

i=1

where ¢;’s are the phases of the superconductors on the
nodes [see Fig. 2(b)] and we adapt the convention that
¢s = ¢ for the summation. The external magnetic flux
though the JRM circuit @y controls the parameter @ex =
Doy /Po- Applying Kirchhoff’s law to node E, we obtain

o = 3(01 + @2 + 93+ @1).

B. Normal modes of the Josephson parametric amplifier

In this sebsection, we focus on the equations of motion
of the closed-circuit model of the JPA (i.e., ignore the input-

output ports) and analyze the normal mode profile of the JPA
circuit (see Fig. 2(b), but without input ports).

The potential energy of the shunted JRM was derived in the
previous subsection; see Eq. (5). The kinetic energy associated
with the capacitors [Fig. 2(b)], Eq. (2), is

E. = ¢3(Cagpi® + Coga® + Cagis> + Cos?), (6

which gives the Lagrangian £ = E, — Ejrm. The EOM of this
closed circuit can be constructed using Lagrange’s equation,
e.g., for a node flux ¢;,

.. 1 Ir. Pext
2Ci9; + l;(fpj — @)+ E[SIH (‘Pj et )

— sin ((pj,1 —@j + %)] = 0,
where ¢; is the node phases, j = 1,2, 3,4, and we use the
index convention that ¢y = ¢4, ¢s = ¢;. According to the
Fig. 2(b), the node capacitance are C; = C3 = C, and C; =
C4 = Cp. The Josephson inductance Ly = ¢y /..

To analyze the normal modes of the circuit, we assume
we have chosen suitable values for the parameters so that
the ground state of the circuit is ¢; = ¢y = ¢3 = ¢4 = 0, and
expand in small oscillations to obtain a linearized set of EOMs
around the ground state. The corresponding normal coordi-
nates, which we denote as [¢y/] in vector form, are related
to the node fluxes via [¢] = [A][¢p], where transformation
matrix [A] is

)

__ G
0 (CatCp)

1 G
2 (Ca+Cp)
0 __G6 )

(C+Cyp)

S =

[Al = ®)

o=

1 _G
2 (Ca+Cp)

042323-4



OPTIMIZING JOSEPHSON-RING-MODULATOR-BASED ...

PHYSICAL REVIEW A 101, 042323 (2020)

and the flux coordinates vectors are defined as [¢] =
(@1, 92, 93, 94)7 and [om] = (@, Pa> b, )T Inverting this
transformation, we obtain the expression for the normal
modes in terms of the node fluxes,

Ya = Q1 — ¢3, (9a)
©p = Q2 — @4, (9b)
1
Qe = —§(<p1 + 03— 02— @4) (9¢)
C, Cy Cy
= —— = Zos). (d
® 2C 1 Cy) <<p1 + Cafpz-i-(/’s + Caso4> (9d)

The profiles for the normal modes, ¢,, ¢, @., and ¢, are
sketched in Fig. 2(c). The normal mode ¢,, has zero frequency
and it is not coupled with any of the other three modes [see
Eq. (11)]. Therefore, ¢, is a trivial mode, which can be
safely ignored in our following discussion. The corresponding
frequencies for the other three nontrivial modes are

_ Ly 4 2Liy cos (&)

w? , (10a)
2C,LinLy
Ly + 2L;, cos (%
wp = =" ), (10b)
2C,Lin Ly
C, + Cp Ly + 4Ly, cos (&
W= et () (10¢)
CiCy 4LinLy

With the coordinate transformation given by the model
matrix [A] [see Eq. (8)], we can rewrite the potential energy
of the JPA (the energy of JRM circuit) using the normal modes
®as b, and @, as

Eyxrm = —4E; [cos (%) cos (%) cos(¢.) cos (QOth)

+ sin <%> sin (%) sin (¢, ) sin (</?me>]

¢2
+ (Wl e+ 200), (11)

where Ej = ¢y, is the Josephson energy.

We observe from Eq. (11) that the four Josephson junctions
on the outer arms of the JRM provide nonlinear couplings
between the normal modes of the circuit. Assuming that the
ground state of the circuitis ¢, = ¢, = ¢, = 0, and it is stable
as we tune the external magnetic flux bias, we can expand the
nonlinear coupling terms around the ground state as

¢2 EJ Pext
EjrMm ~ |:4L(:n +7COS( Z ) (9054-(!)5)

¢§ Pext 2 . Pext
ST ER S
+|:2Lin+ J COS 4 Pe J sSin 4 PaPrP

— —Ejcos ((peXt) ((p;‘ + (pé + 16<pf)

Dex
+ —F cos( Zt>(<ﬂ§¢§ + 40007 +Apppl) +
(12)

Because of the parity of the cosine and sine functions, the
cosine terms in Eq. (11) contribute the even-order coupling
terms while the sine terms contribute the odd-order coupling
terms. The nonlinear couplings are controlled by the external
magnetic flux bias @e. The third-order nonlinear coupling is
the desired term for a nondegenerate Josephson parametric
amplifier, while all the higher order couplings are unwanted.
The Kerr nulling point [17,29] is achieved by setting the
external magnetic flux to @e = 27 (and assuming that the
ground state ¢, = ¢, = ¢, = 0 remains stable), and we find
that all the even-order nonlinear couplings are turned off.

III. INPUT-OUTPUT THEORY OF THE JOSEPHSON
PARAMETRIC AMPLIFIER

The linear-inductor shunted JRM described in the previous
section is the core elements of the Josephson parametric
amplifier. In order to build the JPA, we add input-output lines
and external parallel capacitors to the JRM; see Fig. 2(b). In
Sec. V, we will extend the description of the JPA by adding
stray and series inductors to the JRM.

In order to fully model the JPA, we need to describe the
input-output properties of the JPA circuit. In Subsec. Il A, we
introduce input-output theory and apply it to the problem of
modeling drive and response of the JPA. In Subsec. III B, we
present the full nonlinear equations of motion that describe
the JPA circuit.

A. Input-output relation for the Josephson parametric amplifier

To solve the full dynamics of the JPA with amplification
process, we need to be able to describe the microwave signals
that are sent into and extracted (either reflected or transmitted)
from the circuit. Therefore, we need to connect the input-
output ports to the JPA circuit and include the description of
them in the EOMs.

To simplify the problem, we assume that the drives per-
fectly match the profiles of the corresponding normal modes,
as shown schematically for modes a and b in Fig. 2(a). Take
mode a as an example. We send in a microwave signal with the
amplitude of the voltage V, i, = ¢o@,.in into the port for this
mode. The corresponding current flow from the transmission
line to the amplifier is 1, ;, = V}”’”, where Z, is the impedance
of the transmission line. The Voﬂltages applied to nodes 1 and
3Jare V; = %%,in and V3 = —%gba,in, respectively, while the
output microwave signal has output voltage amplitude V, oyt =

@0Pa.out and the output current is I, oyt = %

At the nodes which connect to the transmission line, e.g.,
nodes 1 and 3 for a mode, the voltage and current should
be single-valued. This requirement induces an input-output

condition

Va,in + Va,out = Va = Vl - V3»
]a,in - Ia,out = [l,a = _]3,117 (13)

where I , (I ,) is the net current flow into node 1 (3) of the
amplifier from the port. Because the output signals should
be determined by the input signals, we eliminate the output
variables from the input-output relation so that it can be
combined with the current relation inside the JRM to construct
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the EOMs for the open circuit model

_ 2Vain  do(g1 — ¢3)

Lo=—h,= 14
1 3, Z. Z (14)

Given the the drives (inputs), we can solve for the mode fluxes
using the EOMs, and then obtain the outputs using the input-
output relations. For example, the output voltage on port a is
determined by
Vaout = o(@1 — ¢3) — Viin- (15)
In the remainder of this paper, we focus on the reflection
gain of the JPA which is obtained from a phase-preserving
amplification process. The input signal to be amplified by the
JPA is a single-frequency tone. The amplified output is the
reflected signal at the same frequency. Using the Josephson
relation relating voltage and flux, we observe that the reflected
voltage gain is equal to the reflected flux gain. Therefore, we
use the input-output relation for the mode flux; e.g., for port a
we have
Pa,out = @1 — ¢¥3 — Pa,in- (16)
The analyses of input-output ports for modes b and c are
similar. For b port, we have

2Vpin  ¢o(¢2 — ¢4)

Ly=—L;= Z Z (17a)
Vi,out = @o(¢2 — @4) — Vi.in, (17b)
J
@1+ Go1 = (gé;:z —¢4) + ZCiL] :sin (901 -+
G+ Ger — glc b_L::3 — 94 2C1,LJ :Sin <<p2 ot
@3+ Oz = ?CE_LITZ — o) + ZCiLJ :sin (<P3 — s+
@+6m—§£f—%)2éhﬁdm_w+

and for ¢ port

I2,c = I4,c = _Il,c = _13,c

\/zvcin ¢0
Ve L 8
Z 2ZC(¢2+<P4 @1 —@3) (18a)
N
Veou = T"«oz + @1 — @1 —@3) —Vein.  (18b)

The extra factor /2 that appears for the ¢ port is due to
the microwave power being split 50 : 50 between the two
transmission lines that drive all four nodes simultaneously.
When constructing the EOM with input-output ports, we
should consider the current contribution from all the input-
output ports together. For example, the net current injected
through node 1 should have contributions from the drive
applied to both ports for modes a and ¢, i.e., I1 net = 11,4 + I1.c.

B. Full nonlinear equations of motion for the Josephson
parametric amplifier

In this subsection, we combine the circuit model for JPA
with the input-output relations to construct the full nonlinear
EOMs of the JPA. We will take node 1 as an illustrative
example and then give the full set of EOMs for the circuit.
Note that the left-hand side of the EOM for the closed circuit
model of the JRM in Eq. (7) is equivalent to the current
relation at node 1, except for a constant factor ¢g. To construct
the EOM for the open circuit with all the driving ports, we
should take the net current injected into node 1 to replace the
right-hand side of the Eq. (7). Applying this procedure to all
nodes, we obtain the EOMs

1 ) — sin (<P4 -1+ 1 ) = 2Codo (he+1h,e), (19a)
‘pzxt> — sin ((01 — ¢+ ‘/’Zm): = 5o (hy+h.), (19b)
f/’;xt) —sin (‘ﬂz -3+ (pZ“>: _ 2C,11¢0 (ha+he), (190
w:“) _ sin (903 — i+ ‘pzx‘): _ %Wo(u,b YL, (194)

where the net currents injected from each of the ports to the corresponding nodes are given in Eqs. (14), (17), and (18). Using
the transformation of Eq. (8), we obtain the EOMs using the normal modes

$a + YaPa +

= 2Vaat(/)a,in(t)v

LI 2 [sin (&) cos (ﬁ> cos(¢.) cos (%X[) — cos (&) sin (ﬁ) sin(g,) sin (%XI)]
2L Gyl \2 2 ) SN 4 2 2 ) Snteesin=y

(20a)

2 a . . » ] )
@b + vop + 2C(ibLin + @[COS (%) sin (%) cos(g.) cos (%) — sin (%) cos (%) sin(¢.) sin (‘pzxt)]

= 29,0 0p,in(2),

Ge + Yee +

= V2V 0ein(0),

(20b)

Czpzin + C:LLJ [cos (%) cos (%) sin(¢.) cos (%) —sin (%) sin (%) cos(g.) sin <§0th)]

(20c)
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where we define the effective capacitance for the ¢ mode as

4C,C ;
C. = T The mode decay rates y,, y», and y, are given by

Yo = (CaZ)7Y, v = (CpZp) ™', and y. = 2%‘&% We convert
the input-output relations of Egs. (15), (17b), and (18b) into

input-output relations for flux

Pa,out = Pa — Pajin; (21a)
Pb,out = @b — Pb,in, (21b)
Pe,out = ‘/E(pc — @Pc,in- (21¢)

The response of the JPA can be fully described using Egs. (20)
and (21).

Finally, we point out that it is useful to use the normal
modes of the JRM as the coordinates for writing the EOMs
as it makes the analysis of the effects of the various orders of
nonlinear coupling easier to understand. On the other hand,
using the node fluxes as coordinates is useful as they are more
naturally connected to Kirchhoff’s law, especially when we
want to include experimental imperfections.

IV. SATURATION POWER OF A JOSEPHSON
PARAMETRIC AMPLIFIER (WITH PARTICIPATION
RATIO p = 1)

In this section, we first obtain the saturation power of the
JPA as described by the exact nonlinear EOMs discussed in
Subsec. IIIB. Next, we analyze how higher order nonlinear
couplings affect the dynamics of the JPA with the goal of
understanding which couplings control the saturation power
of the parametric amplifier, to give us guidance on how to
improve the saturation power.

We begin with Subsec. IV A, in which we summarize
our main results concerning the dependence of the saturation
power on the parameter

B = Ly/Li. (22)

Specifically, we compare numerical solution of the full non-
linear model with numerical solutions of truncated models as
well as perturbation theory results. We show that for small g
the limitation on saturation power comes from dynamically
generated Kerr-like terms, while for large B saturation power
is limited by fifth-order nonlinearities of the JRM. The details
of the analytical calculations are provided in the following
subsections.

In Subsec. IV B, we remind ourselves of the exact ana-
Iytical solution for the ideal third-order amplifier in which
the signal is so weak that it does not perturb the pump (i.e.,
the stiff-pump case). Next, in Subsec. IV C we consider the
case of a third-order amplifier with input signal sufficiently
strong such that it can affect the pump (i.e., the soft pump
case). In this subsection, we construct a classical perturbation
expansion (in which the stiff pump solution corresponds to the
zeroth-order solution and the first-order correction) and find
that it leads to the generation of an effective cross-Kerr term
and a pair of two-photon loss terms, one of which could be
thought of as an imaginary cross-Kerr term. In Subsec. IV D,
we compare the effects of the dynamically generated terms
to intrinsic Kerr terms. We analyze fifth- and higher order
couplings in Subsec. IV E.

A note about notation: Throughout this section, we refer to
the @ mode as the signal mode, » mode as the idler mode, and ¢
mode as the pump mode with intrinsic frequencies w,, wp, and
.. To simplify the discussion of the perturbative expansion,
we only consider the case in which we assume that (1) the
parametric amplifier is on resonance, i.e., § = wg — w, =0
(where wy is the frequency of the signal tone) and ¢, = wp —
(wg + wp) = 0 (wWhere wp is the pump tone frequency), so that
ws = Wy, Wy = wp and wp = w, + wp, (2) the magnetic flux
bias is set to the Kerr nulling point, i.e., gexy = 27, (3) an input
tone is only sent to the signal mode and there is no input to the
idler mode.

A. Main result: Saturation power as a function of 8

In this subsection, we will compare the exact numerical
solution of the full nonlinear EOMs of the JPA to various
approximate solutions in order to identify the effects that limit
saturation power.

For concreteness, we fix the following parameters: The
magnetic field bias is fixed at gex; = 27, the mode frequencies
are fixed at w,/(2mw)=7.5 GHz and w,/(27)=5.0 GHz
(w./(2m) = 6.37 GHz is fixed by the JPA circuit), the de-
cay rates of the modes are fixed at y,/(2w) = y»/(2n) =
v./(2m) = 0.1 GHz, and the critical current of the Josephson
junctions is fixed at i, = 1 wA. Throughout, we will set the
amplitude of the pump to achieve 20-dB reflection gain (at
small signal powers). This leaves us with one independent
parameter: the JRM inductance ratio S.

We shall now analyze saturation of the amplifier as a
function of 8. We find it convenient to use saturation input
signal flux |¢, in(®,)| as opposed to Py 4p because the former
saturates to a constant value at high 8 while the latter grows
linearly at high 8. We note that the two quantities are related
by the formula

b5 2 1
Piigs = ~— |07 0ain(®)| :§Ca¢§yaw§|§0a,in(wa)|2- (23)

2Z,

At the nulling point, the EOMs do not explicitly depend
on the Josephson junction critical current i.. Therefore, the
dynamics of the circuit in terms of the dimensionless fluxes
®a> P, and @, are invariant if we fix w,, wp, Ya> ¥p, Ve, and
B. However, i. is needed to connect the dimensionless fluxes
to dimensional variables. Specifically, the connection requires
the mode capacitance; see Eq. (23). At the nulling point,
the mode capacitance is set by the mode frequency and L;,
[e.g., C, = 1/(a)3Lin)] and L;, is set by i.; see Eq. (22). In
the following, we will analyze saturation power in terms of
dimensionless fluxes.

In Fig. 3, we plot the saturation flux as a function of 8
obtained using the full nonlinear EOMs as well as various
truncated EOMs and perturbation theory. In Fig. 3(a), we
use the conventional criteria that saturation occurs when the
gain change by +1dB, while in Fig. 3(b) we use the tighter
condition that gain changes by 40.1dB. We observe that
the saturation flux has two different regimes. At small 8
the saturation flux grows linearly with 8, while at high g it
saturates to a constant.

To understand the limiting mechanisms in both 8 regimes,
we compare the saturation flux ¢,i, obtained from the
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FIG. 3. We plot the saturation flux |¢, ;,| of the JPA as we change
JRM inductance ratio 8 = L;/L;,. The amplifier saturates to 19 and
19.9dB in panels (a) and (b) respectively. The saturation flux from
numerical integration of full nonlinear EOMs, SoP third-order, and
StP fifth-order nonlinear models of JPA are plotted as blue, orange,
and dark green solid lines in both subplots. The saturation fluxes
are also obtained by the perturbation analysis for the SoP third-
order and StP fifth-order nonlinear models. We plot the third- and
fifth-order perturbation results as dashed lines and dash-dotted lines.
In panel (a), the perturbation saturation fluxes do not agree well
with the numerical ones. This is because the saturation fluxes are
already out of the radius of convergence of the perturbation series.
In panel (b), they have a good agreement. Parameters chosen are
@Qext = 27, the mode frequencies w,/(2w) = 7.5 GHz, w,/(27w) =
5.0 GHz, and mode decay rates y /(27 ) = 100 MHz for all three
modes. The critical current is set to i, = 1 ©A. We tune the inner
shunted inductance L;, to tune .

numerical integration of full nonlinear EOMs with the various
truncated EOMs. We mainly focus on two nonlinear trun-
cated models: (1) soft-pump third-order truncated model (SoP
third), in which the EOMs of the amplifier are obtained by
truncating the Josephson energy to third order in mode fluxes;
(2) the stiff-pump fifth-order truncated model (StP fifth), in
which the Josephson energy is truncated to fifth order in mode
fluxes and we ignore the backaction of the signal and idler
modes on pump mode dynamics.

We begin by considering the small-8 regime. Comparing
the saturation flux obtained from the numerical integration of
full nonlinear EOMs with the above two truncated EOMs, we
see that the saturation flux ¢, ;, of the full nonlinear EOMs
most closely matches the EOMs of SoP third-order model of
the amplifier, which indicates the soft-pump condition is the
dominating limitation in this regime.

In the soft-pump model, saturation power is limited by
the dynamically generated Kerr term. This term shifts the
signal and idler modes off resonance as the power in these
modes builds up. We describe the details of this process in
Subsecs. IVC and IV D. In the small-f regime, the satura-
tion flux of the amplifier increases as we increase S [see
Fig. 3(a)]. This is because increasing B effectively decreases
the nonlinear coupling strength of the amplifier and therefore
decreasing the effective strength of the dynamically generated
Kerr term. This conclusion is supported by comparing (see
Fig. 3) the exact numerics on the SoP third model (labeled SoP
third) with a perturbative analysis of the same model which
captures the generated Kerr terms (labeled SoP third fifth
order).

In the large-f regime, the saturation flux obtained from
full nonlinear model saturates to a constant value (see Fig. 3,
“all-order” line). This behavior diverges from the prediction
of the SoP third-order nonlinear model (“SoP third” line) but
it is consistent with the StP fifth-order nonlinear model (“StP
fifth” line), which indicates that the dominating limitation
in the large-8 regime is the intrinsic fifth-order nonlinearity
of the JRM energy. Perturbation theory analysis of the StP
fifth-order nonlinear model (“StP fifth third order” and “StP
fifth fifth order” lines; see Subsec. IV E) indicates that the
saturation flux depends on the ratio of the fifth-order and
the third-order nonlinear couplings arising from the Joseph-
son nonlinearity, and is therefore independent of 8. As we
increase B, the limitation on the saturation power placed by
the generated cross-Kerr couplings decreases and hence the
mechanism limiting the amplifier’s saturation flux changes
from generated cross-Kerr couplings to fifth-order nonlin-
earity of the JRM energy. The § at which the mechanism
controlling saturation flux changes is controlled by the decay
rates as B o< y ~'/2. For our choice of parameters, this change
of mechanism occurs at § ~ 6.

B. Ideal parametric amplifier, third-order coupling with stiff
pump approximation

In this subsection, we remind ourselves with the solution
of ideal parametric amplifier. The ideal parametric amplifier
can be exactly solved in frequency domain such that we can
also verify the reliability of the numerical solutions.

In an ideal parametric amplifier, the only coupling present
is a third-order coupling of the signal, idler, and pump mode
that results in parametric amplification. Further, the pump
mode strength is considered to be strong compared to the
power consumed by the amplification, such that the pump
mode dynamics can be treated independently of the signal and
idler modes. This approximation is commonly referred to as
the “stiff-pump approximation” (StP). The EOMs to describe
the parametric amplifier can be derived from the full nonlinear
EOMs in Eq. (20) by expanding the nonlinear coupling terms
to second order in mode fluxes ¢’s (second order in EOMs
corresponding to third order in Lagrangian). Under the stiff-
pump approximation, we can effectively remove the three
mode coupling terms in the EOM for the pump mode

¢c + Vc(;bc + wg% - ‘/Eycat (pc,in(t)- (24)
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¢, obtained from this equation acts as a time-dependent
parameter in the EOMs for the @ and b modes:

2
20,

Ga + VaPa + O20a — 5 e = 2YudiPain(®),  (252)
. . 2 Zwi
@b+ Vo@p + wpep — 7%% =2¥p0,@pin(t).  (25b)

Assuming the pump tone is @cin(t) = @ ine " + c.c., we
find that ¢.(t) = @.(wp)e """ + c.c., where
—l\/il/ch

Pe (Cl)p) = B B

——————Pe.in- (26)
w: — wp — iy.wp

After substituting the c-mode flux ¢, in Eq. (25), the EOMs
for a and b modes become linear and can be solved in the
frequency domain. The Fourier components of the a and b
modes, under the rotating-wave approximation, are

277a3~/b
a\Wq) = a,in» 27a
o) = A lp P (70)
4igFap (wp)
G (@) = ———SVabe P sbam  QT0)

VaVb — 4g2|‘pc(a)P)
where we define the dimensionless decay rates ¥; = y;/w;
and the dimensionless three-mode coupling strength g =
(1/B)sin (£2) = 1/, which is obtained from a series expan-
sion of the dimensionless potential energy

Erm = [(¢§/Lin)]71EJRM~ (28)

Here we assume the input tone is @, in = goa,ine”"”"’ + c.c. and
there is no input into idler () mode.

The linear response of the ideal parametric amplifier is
obtained using scattering matrix formalism. The EOMs of an
ideal parametric amplifier can be written in matrix form as
[M]le] = 2[7[¢in], where

—2ig<pc(wp)) (29)

[M] =( | ’
2igp:(wp) Vb

7] = (V“ ) ) (30)
Vb

The scattering matrix, which is defined by [@ou] =
[S1[¢inl, is given by [S] = 2[M~"[7] — L2, where we have
used the input-output relation [¢] = [@in] 4 [@ou] and Ly> is
the 2 x 2 identity matrix,

2¥a¥p _ __ Aighec(wp)
Tath—482 e (0p)® Vas—4g? pe(wp)®
4igVapl (wp) 2¥a ¥y

VaPo—4g% e (wp)I* VaPo—4g% e (wp)I*

[S]= €2y

The reflection gain of the signal mode (in units of power)
is defined as Gy = |[S]i1 |2. To get large gain (Gy > 1), the
pump mode strength should be tuned to

28l@c(wp)| ~ \/ VaPo- (32)

Alternatively, we can obtain the response of the JPA using
time-domain numerical integration. First, we solve for the
mode variables inside the JPA circuit with specific signal and
pump inputs. Next, we use the input-output relation to find
the output signal and then we obtain the reflection gain of the
amplifier. Specifically, to solve the dynamics of the parametric

50
— 40 —_— tr =17
g Y
= 30} tr =270
g === 1 =419
S 20} 1
g - tf=8T0
10¢ ==- S—Mtx

1.0 12 14 16 18 20 22
Pein

FIG. 4. The reflection gain of an ideal parametric amplifier cal-
culated by both scattering matrix (blue curve) and time-domain nu-
merical evolution (red dashed line). The response of the ideal ampli-
fier can be faithfully simulated by the time-domain numerical method
with a reasonable reflection gain. The black dashed line shows the
bias point beyond which the amplifier is unstable. Our time-domain
numerical solution start to deviated form the scattering matrix calcu-
lation at ~2.1. This is because the numerical accuracy of the time-
domain solver. In the insert, we increase the final time #; of the time
solver. We notice a better and better convergence to the analytical so-
lution (red dashed line). This is caused by a numerical instability that
occurs near the divergence point of the amplifier, Eq. (32). Param-
eters chosen: @e = 27, w,/(2w) = 7.5 GHz, w,/(27w) = 5.0 GHz,
Yo =7VYp = V. =2m x 0.0l GHz, and i. = 1.0 pA. Time constant
7o = 4000f,!, where f, is the signal mode frequency.

amplifier, we set the input signal as ¢, in(t) = @,.in cOS(wst)
and @ i, = 0, and numerically integrate the EOMs [Eq. (25)].
Here we note that @, in = 2¢,.in, Which is defined in Eq. (27).
In Fig. 4, we show the comparison of the reflection gain
obtained using numerical integration (red dashed line) and the
scattering matrix solution (blue solid line). The two solutions
start out identical. However, as we increase the pump mode
strength ¢.i,, we notice that as the reflection gain starts
diverging (Go ~ 35dB; see the insert of Fig. 4) from the
analytical solution. This is because the numerical solver needs
a longer time window to establish the steady-state solution of
the nonlinear EOMs as we move toward the unstable point
(vertical dashed line). To optimize the run time, here and later
in the paper, we choose the time window for our solver so that
the numerical solution saturates for amplification of ~20 dB.

In the unstable regime, the reflection flux on the signal
mode diverges exponentially with time, as the amplifier will
never run out of power under the StP approximation. There-
fore, in this regime the time-domain solver gives a large
unphysical reflection gain (as we cut it off at some large but
finite time).

C. JPA with third-order coupling, relaxing
the stiff-pump approximation

As we increase the input signal strength, the power sup-
plied to the pump mode will eventually be comparable to the
power consumed by amplification, where the amplifier will
significantly deviate from the ideal parametric amplifier. In
this subsection, we reinstate the action of the signal and idler
modes on the pump mode. Since the pump mode strength is
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FIG. 5. We consider the soft-pump condition with third-order
coupling strength and calculate the reflection gain of the amplifier.
We slightly detune the pump drive frequency from the sum frequency
of the signal and idler mode frequency. When the pump frequency
detuning ¢, is negative (green dash-dotted line), the reflection gain
is further suppressed compared with on-resonance drive (orange
dashed line). However, when the pump frequency detuning is positive
(blue line), the “shark fin” feature reappears, which was understood
as the consequence of the existence of Kerr nonlinearity in the
amplifier system.

affected by the signal and idler mode strengths, we refer to it
as the “soft-pump” (SoP) condition.

The EOMs for the soft-pump third-order model of the
JPA can be obtained by expanding the full nonlinear EOMs
[Eq. (20)] and truncating all three EOMs to second order in
mode fluxes. That is, we use Eq. (25) to describe a and b
modes and modify Eq. (24) for the ¢ mode as

2
. . (,()c
Ge + Ve + 0. — 5 Yatr = V2 gen(®).  (33)

Unlike the StP approximation, the ¢ mode flux ¢, can no
longer be treated as a time-dependent parameter unaffected
by a and b modes. While we can no longer obtain an exact
analytical solution to these EOMs, we use perturbation theory
as well as time-domain numerical integration to seek the
dynamics of the amplifier.

In Fig. 5, we plot the reflection gain obtained by numerical
integration. The reflection gain of the amplifier is no longer
independent of the input signal power; instead we see that
the reflection gain deviates from 20dB as we increase the
signal mode power. Moreover, as we change the detuning of
the pump mode relative to the sum frequency of the signal
and idler mode, the deviation of the reflection gain changes
from negative to positive. While a deviation toward smaller
gain (which occurs at negative or zero detuning) is consistent
with the pump saturation scenario, a deviation toward higher
gain (which occurs at positive detuning) is not. The “shark
fin” feature we observe here, in which the gain first deviates up
and then down, has been previously attributed to intrinsic Kerr
couplings [24]. The fact that the “shark fin” reappears without
an intrinsic Kerr term gives us a hint that SoP third-order
couplings can generate an effective Kerr nonlinearity.

To fully understand the effect of the SoP condition, we
use classical perturbation theory to analyze the dynamics
of the circuit. Below, we explain the essential steps of the
perturbation analysis. Then, we focus on the SoP third-order
truncated model and compute the parametric dependence of
the saturation flux of the amplifier.

1. Classical perturbation theory for the Josephson
parametric amplifier

The small parameter in our perturbative expansion is the
input fluxes to the signal and idler modes, ¢, ix and ¢ ,. We
can expand the mode fluxes in a series as

0;i(1) =)+ (1) + 07 (0)... (34)

for j =a, b, c. The EOM of the signal mode flux ¢, after
series expansion is

(37 + vad; + 02) [P + P () + - -+ ]

2
=20+ 020+ 0 + o0+

= 2Y401@a,in(1). (35)

The idler and pump mode EOMs are similar.

In the absence of inputs to the signal and idler modes,
we obtain the zeroth-order solution of the EOMs. Since the
amplifier should be stable, there should be no output in the
signal and idler modes when there is no input, i.e., (pt(lo) =
<p,(]0) = 0. Therefore, the only nonzero zeroth-order solution is
for the pump mode, which is given by

00 + v o + 020 = N2y pein(1). (36)

This equation matches the StP ¢ mode EOM [see Eq. (24)]; the
zeroth-order solution for ¢, is given in Eq. (26). We can then
solve the higher corrections to signal, idler, and pump mode
fluxes by matching the terms in the EOMs order by order. For
example, the equations for first-order corrections ¢! and (p}(;l)
are identical to the ideal parametric amplifier, and hence they
are given by the StP solution Eq. (27), while the first-order
correction to the pump mode flux is (" = 0.

As the first-order correction to the pump mode is zero,
there are no second-order corrections to the signal and idler
mode fluxes. The second-order correction to the pump mode
has two frequency components, ¥ = wg + w; and A = wg —
wy, with Fourier components

1

9?(T) = fx Ego;l)(ws)w,i”(wn, (37a)
1

eP(A) = fa—o P (ws)ps " (), (37b)

B

where the two dimensionless parameters fx and fa are de-
fined as

C()2

— C
Je= w?— X2 —iy,%’

w2

_ C
fa = @ — A2 — iy A’

(38a)

(38b)
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Both of these two frequency components contribute to the
third-order correction to the signal and idler mode flux with
frequency wg and wy.

To obtain the third-order corrections to the signal and
idler mode fluxes, we define an effective drive vector that is
composed of all the contributions from lower orders, utilizing
Eq. (37) to express ¢'? in terms of ¢! and <p(1)

2
[0] = (2g2(fA+f2)<ﬂé”|<p;§1)| ) (39)

d * 2
282 (fa + f2)ey otV

The third-order correction to the signal and idler mode
is given by [P =M~ 1][1][(p(3)], where [M] is the same
matrix as in the discussion of the ideal parametric amplifier
Eq. (29), and [i] = diag{i, —i} is a diagonal 2 x 2 matrix. The
signal mode third-order correction is

1 2
v = <E> M (s + £l o)

— 20 T (F + ey M) @0
Using this expression, we obtain the corrections to the reflec-
tion galn up to second order G? = |g0(1)(a)5) + (p(3)(a)5) —
gaa,m| /1®a.in 2. Similarly, we can solve the perturbation theory
order by order until the desired order.

Here we want to stress that we only focus on the main
frequency components of signal and idler modes, i.e., ¢,(®,)
and ¢p(wp) and ignore the higher order harmonics. This
assumption is also applied when we consider the higher than
third-order nonlinear couplings in the JPA truncated EOMs,
e.g., in StP-Kerr nonlinear truncated model (discussed in
Subsec. IV D) and StP fifth-order truncated model (discussed
in Subsec. IVE).

Further, we point out that the above discussion is easily
generalized to the case when ws # w,, @w; # wp, and (or)
Pext # 27[ .

Next, we consider the question of how the perturbation
on the reflection gain can be used to compute the saturation
power of the amplifier. The saturation power is defined as the
input power at which the amplifier’s reflection gain changes
by 1dB. At the limit ¢, j, — 0, the reflection gain of the
amphﬁer is noted as Gy, which is given by Gy = |pV) —
gaa,m| /l(pa,1n|2

As we increase the input signal strength ¢, i, to reach 1 dB
suppression of the reflection gain, the corrected gain (in power
unit) should satisfy

[0 + 6 = guinl”

> =10"%1G,, (41)
|@a,inl

G=

where ¢ is the higher order corrections to the signal mode
flux in perturbation theory. In the high gain limit (Gy > 1),
we can estimate the criteria by

o/ |oP] = € =107 — 1. (42)

Note € depends on the definition of the threshold for the gain
change at the amplifier saturation.

2. Perturbative analysis on SoP third-order EOM

We apply the above perturbation analysis to SoP third-
order truncated model to understand the mechanism of ampli-
fier saturation in this model. Before we proceed to calculate
the corrections to the reflection gain, we estimate the matrix
elements in the inverse of the parametric matrix [M] [see
Eq. (29)] in high gain limit, i.e.,

Ga =Gy = 27,IM 111 — 1
_ 2)71177}1
Va¥o — 482 |pc(wp)|?

—-1>1 (43)

Therefore, we can approximate 2y,[M 111, ~ G4 and hence
@P(wg) ~ Ga@ain- The matrix element [M~']; can be ap-
proximated by —iGa/(2+/7.¥), which can be seen from
the relation [M~'y; = —i2gpP*(IM~'111)/7 and /FuP ~
2glo).

The third-order correction to signal mode strength is given
by the Eq. (40), which becomes

g
0. (@p) ~ 22-GHIm(fz)gy iy (44)
a
in the high-gain approximation.
To calculate the saturation flux, we let ¢ ~ epl and
solve for ¢, i, where € is given in Eq. (42). The saturation
flux given by third-order perturbation is

mlm(fz)*‘/z, (45)

@ain+1 a8 ~ Gy 3/4\/_
where Gy is the small-signal reflection gain of the amplifier.
The saturation flux given by third-order perturbation theory
of SoP third-order nonlinear model is plotted as orange (light
gray) dashed line in Fig. 3(a) [41]. We notice that the satura-
tion flux predicted by third-order perturbation theory does not
agree well with the numerical simulation (“SoP third” line).
The disagreement also occurs when we tighten the criteria
for amplifier saturation to 0.1dB [see Fig. 3(b) “SoP third
third-order” line).

To explain the disagreement between the perturbation the-
ory and the numerical integration method, we correct the
signal mode flux to the next nonzero order, which is at fifth
order in ¢, in. To solve the fifth-order correction of signal and
idler mode fluxes, we follow the same strategy as demon-
strated above. The only nonzero fourth-order correction is
<p§4), with two frequency components, (p§4)(2) and gog“)(A).
The fifth-order correction to the signal mode strength ¢ is

4
o> ~ = S G Relfs + fual0 i (46)

where we use the fact that imaginary parts of fo and fx are
much smaller than their real parts and hence we ignore the
contribution from their imaginary parts. The saturation flux
can be estimated by |p>| ~ €|pV| as

1/4
S/SM[ SRe(fs + /7] @D

Pa,in,+1 dB ™ G,
Compared with the saturation flux given by third-order
perturbation, the fifth-order correction is more significant as
fa and fx are almost real. However, in third-order pertur-
bation theory, the contribution of real parts of fa and fx
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is canceled, but they will appear in next order perturbation,
which dominates the saturation.

The saturation flux correction until fifth-order perturbation
is obtained by directively solving Eq. (41) for ¢, i, where
the corrections of signal mode strength ¢! = ¢ + ¢,
The saturation flux corrected up to fifth order [“SoP third
fifth-order” line in Figs. 3(a) and 3(b)] have better agreement
with the numerical solution.

However, in both third- and fifth-order perturbation anal-
ysis, the saturation flux with 1-dB gain change does not
agree well with the numerical solution [see Fig. 3(a)]. This
is because the saturation flux for =1 dB is beyond the radius
of convergence of the perturbation series. In order to validate
the perturbation analysis, we tighten the criteria for amplifier
saturation to change of the amplifier gain by £0.1 dB, which
makes the signal flux stay in the radius of convergence. In
Fig. 3(b), the saturation flux corrected to fifth order (“SoP
third fifth-order” line) has a much better agreement with the
numerical methods [“SoP third” line in Fig. 3(b)].

We notice that the saturation flux is inversely proportional
to g = 1/8, and hence we expect that it can be increased by
decreasing the three-mode coupling strength (increasing f).
At the same time, the pump strength must be increased in
order to reach Gy. This procedure, in effect, makes the pump
stiffer.

D. Intrinsic and generated Kerr couplings

In this subsection, we comment on the generation of effec-
tive Kerr terms and compare it with the intrinsic cross-Kerr
couplings in the Lagrangian. In the perturbation analysis, if we
expand the pump mode strength to second order, the effective
EOMs of the signal and idler modes contains a cross-Kerr
coupling term, in the form of ¢,|¢;,|? for the signal mode and
I%IZ% for the idler mode [see, e.g., Eq. (40)]. We will show
that these generated Kerr terms limit the saturation power (at
least for small B).

To construct an understanding of this mechanism, we use
perturbation theory to analyze the StP amplifier with an in-
trinsic cross Kerr k,;, and compare it with the SoP third-order
nonlinear amplifier. As we discussed in Subsec. IV B, in the

(a) —127 .
—— SoP-3rd 1 ﬁ — 12

Shifted StP-4th | |,

Gl SoP-3rd +5th | /1

m |

= |

2~ 136} |

T 1

4 :
—145 5 —— :
-0.4 -0.2 0.

kab

stiff pump approximation, we treat the pump mode flux, ¢., as
a time-dependent parameter that is independent of the signal
and idler modes. The EOMs for the signal and idler modes
can be obtained by adding the terms 4kq,@q¢; and 4k,p020p
to the left-hand-side of Egs. (25a) and (25b), respectively.

In perturbation analysis, following the discussion in the
previous subsection, we expand the signal and idler mode
fluxes in the order of ¢, i and ¢, in. We further assume that the
amplifier is stable; i.e., there is no output from the amplifier
if there is no input, which gives the zeroth-order solution
of signal and idler modes as ¢ = gob(,o) = 0. The first-order
solution of signal and idler mode fluxes repeats the solution
of ideal parametric amplifier [Eq. (27)] and the next nonzero
correction appears at third order. The corresponding drive
term is

) (1) 2
(0] = (::abwa (@s)]g,” (@) ) )

2
oy (o) oM (ws)|

Comparing with Eq. (39), we see that the soft-pump condition
gives an effective signal-idler Kerr coupling strength

kS = 1 [fa + Re(fs)].

We note that this effective Kerr coupling is complex as fa
is complex. We also observe that there is an additional term
in Eq. (39) that we label ¢°ff = (1/4)g*Im(fx), which cannot
be mapped onto a Kerr coupling (as the signal and idler parts
have opposite sign).

Further, as the intrinsic cross-Kerr coupling k&, is real, the
third-order correction to the signal mode in StP cross-Kerr
amplifier model is zero. If we proceed to next-nonzero-order
correction to the signal and idler mode, and compare the drive
term with the one from StP third-order truncated model in
same perturbation order, we identify the same effective Kerr
coupling strength as Eq. (49).

To check the correspondence and understand to what
degree the saturation power of SoP third-order amplifier is
limited by the generated effective Kerr coupling, we manually
add an intrinsic cross-Kerr coupling, kabgof(pg, in the SoP
third-order truncated Lagrangian, and observe the saturation
power of the amplifier as we tune k,;, [see Figs. 6(a) and 6(b),

(49)

(b) ;
—110} |~ SoP-3rd ; B =10.0
Shifted StP-4th
SoP-3rd + 5th | [l
~120} !
-130t |

FIG. 6. We compare three different cases, soft pump with third-order coupling (SoP third), stiff pump with Kerr coupling (StP fourth),
and soft pump truncated until the third order with fifth-order couplings between signal and idler mode (SoP third + fifth). For each cases, we
manually turn on a cross-Kerr coupling k,;,. For StP fourth case, the plot is shifted by —kif]ﬂ). The vertical red dashed line shows the location
where the real part of the dynamically generated cross-Kerr is fully compensated by the intrinsic cross-Kerr coupling. The parameters chosen:
w,/(2n) =17.5 GHz, w,/(27) = 5.0 GHz, y;/(27) = 100 MHz. We set 8 = 1.2 [in panel (a)] and 10.0 [in panel (b)]. The critical current is

i = 1.0 pA.
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SoP third line]. We observe that in both small g [see Fig. 6(a),
B = 1.2] and large B [see Fig. 6(b), 8 = 10.0], as we tune
the intrinsic Kerr term, the saturation power is maximized at
the point indicated by the dashed red line. This maximum
corresponds to the value of the intrinsic Kerr term that best
cancels the generated Kerr coupling (k,, = —Re[kjlff]) and
hence provides a maximum boost to the saturation power.
We also notice that the maximum peak on Fig. 6(a) has
a shift from the full compensation point (k,, = —Re[kg,ﬁf]).
This is caused by the existence of imaginary term of fx. In
perturbation analysis, if we turn off the imaginary part of fy5,
the peak is perfectly centered at the full-compensation point.

We also compare the saturation power obtained with SoP
third order (blue solid lines) to the StP with intrinsic cross-
Kerr term k,;, (orange dashed lines). In order to make the com-
parison more direct, we shift k., for the StP-Kerr amplifier
by the computed value of the generated Re[k:f] of the SoP
third-order amplifier (i.e., we line up the peaks). We observe
that away from the saturation power peak the two models
are in good agreement, which supports the correspondence.
Further, if we focus on k,;, = 0 point on the plot, i.e., the point
at which SoP third-order model has no added intrinsic kg,
the saturation power of SoP third-order amplifier (blue solid
lines) matches the shifted StP cross-Kerr nonlinear amplifier
(orange dashed lines) in both Figs. 6(a) and 6(b). Therefore,
we conclude that it is indeed the generated Kerr coupling that
is limiting the saturation power of the SoP third-order model.

However, near the saturation power maximum the two
models diverge: the saturation power of the StP-Kerr amplifier
becomes infinite as the intrinsic Kerr nonlinearity becomes
zero, while the saturation power of the SoP third-order ampli-
fier remains finite. This is caused by the imaginary part of k°if
and the ng, which cannot be compensated by a real intrinsic
cross-Kerr coupling kp.

We can understand the Im[k¢'] and the ¢ terms as a
two-photon loss channel, i.e., in which a photon in the signal
mode and a photon in the idler mode combine and are lost
in the pump mode. Both of the terms can be mapped to an
imaginary energy which represents the decay of the signal
and idler mode fluxes. Specifically, Im(fx) term represents
the loss of a photon in signal mode and a photon in idler mode

J

d

In the high-gain limit, the third-order correction of the
signal mode flux is

h
3
(pé)w4§(

where h = h, = hy, is the dimensionless fifth-order coupling
strength. Following the same method, we get an estimate on
the saturation flux

G302 ins (52)
Vb) 0¥

Gaimsian ~ Je—(1+ L), (53)
4h ]/b

to a pump photon with frequency w = X, while Im(f5) term
represents the loss to a @ = A pump photon.

E. Fifth and higher order nonlinearities

As we pointed out in Eq. (47), the saturation flux increases
as we decrease the three-mode coupling strength g (by in-
crease ). However, as we increase B, the saturation flux
diverges from the SoP third-order model (see Fig. 3). This
is because the saturation flux is so large that higher order
nonlinear couplings becomes the limiting mechanism to the
saturation flux. In this subsection, we focus on the higher
order couplings and show how they limit the saturation flux
of the amplifier.

At the Kerr nulling point, ¢ex = 27, the Kerr couplings
are turned off, and hence the next nonzero order of nonlinear
couplings are fifth order in mode fluxes. The fifth-order terms
in the expansion of the dimensionless potential energy of the
JRM, Eq. (28), are

i = haqﬁwm + hopaype + hcwa%wf ., (50)
where h, = h, = 24/3 sin (%) and he = 6/3 sin (%*). To un-
derstand the direct effects of the fifth-order couplings, we
apply stiff-pump approximation and only include third- and
fifth-order nonlinear coupling terms into the EOMs (Kerr
couplings are turned off at @ = 27). Among the three
fifth-order terms, h, and h, terms are more significant than
h. terms, because in stiff-pump approximation where the ¢
mode is treated as stiff, the term h.@>@.ppp. only shifts
the pump mode flux to reach the desired gain Gy and does
not causes saturation. However, h,92¢,¢»@. and hbgo,%goagobgac
terms dynamically shift the effective third-order coupling
strength as we increase the input signal power, which saturates
the amplifier.

Again, we apply perturbation theory to analyze the StP
fifth-order amplifier following the discussion in Subsec. IV C.
The lowest order solution of the signal and idler mode fluxes
are at first order, which repeats the solution of the ideal
parametric amplifier. The next nonzero correctlon appears
at third order with equation [M].[¢®] = —[i].[¢" » )], where
[] is a 2 x 2 diagonal matrix with elements {i, —i} and the
corresponding drive term is

[0®] = B N R () R R A i (51)
ad= 6hae? |00 + 120,07 |00 0 + e (9f*) 0% )

(

We note that the ratio g/h is independent of 8. As we
increase § to reduce the limitation placed by SoP third-order
model, Eq. (47), we eventually hit the limit that is given by
StP fifth-order nonlinear model, Eq. (53), i.e., the dominating
limiting mechanisms on saturation flux switches.

To be more explicit, similar to the effective cross-Kerr
compensation illustrated in Subsec. IV D, we add fifth-order
nonlinear coupling terms into the SoP third-order nonlinear
model, which is labeled as “SoP third + fifth” in Fig. 6
(green lines). In the small S regime [Fig. 6(a)], except around
the generated cross-Kerr full compensation region, the SoP
third + fifth-order nonlinear model closely follows the SoP
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third-order model, especially at k,;, = O point where there is
no intrinsic k,;, added to both of the models. This indicates that
at low-8 regime, the dominating limitation on the saturation
power is given by the generated effective cross-Kerr coupling
from the SoP third-order nonlinear coupling. However, when
B is large [Fig. 6(b)], the saturation flux calculated from these
two models disagrees. With additional fifth-order nonlinear
couplings, the saturation flux is heavily suppressed, which
shows that the fifth-order nonlinear couplings dominate the
SoP third-order effects in limiting the saturation power of the
amplifier.

Furthermore, in the large-B regime, the fifth-order non-
linear couplings in the JPA Lagrangian is the dominating
limitation on the saturation power in full nonlinear EOMs
of JPA among all the nonlinear couplings. To prove it, we
numerically solve the saturation flux of the StP fifth-order
truncated model of JPA (“StP fifth” line in Fig. 3) and compare
it with saturation flux obtained from the full nonlinear EOMs
(“all orders” line in Fig. 3). The saturation flux from StP
fifth-order model matches the saturation flux of full nonlinear
JPA model in large-p regime perfectly.

The saturation flux computed by numerical integration of
StP fifth-order nonlinear model is independent of parameter
B, which agrees with the perturbation analysis. To further
validate the perturbation theory, we plot the saturation flux
from third-order perturbation in Fig. 3(a) (“StP fifth third-
order” line) for comparison. We notice that the perturbation
result does not have a good quantitative agreement with the
numerical solution. This is because the saturation flux is
outside the radius of convergence of the perturbation series.
If we tighten the criteria for amplifier saturation to the signal
mode flux that causes the gain to change by 0.1 dB instead,
the third-order perturbation on StP fifth has much better agree-
ment with the numerical solutions [see Fig. 3(b) “StP fifth”
line and “StP fifth third-order” line]. However, to perfectly
match the numerical solution, we need next-order correction,
i.e., fifth-order correction to signal mode flux. The result
saturation flux is plotted in Fig. 3(b) as the red dot-dashed line.

Similarly, for the higher order nonlinear couplings in the
Lagrangian, e.g., the seventh order in the Hamiltonian, we
can still apply the perturbation theory to analyze the satu-
ration flux. Here we focus on one of the seventh-order cou-
plings, —laagpigpagob(pc, to finalize the discussion. According to
Eq. (12), 1, is sin (%)/(1920/3). We still consider the trun-
cated EOMs of the amplifier under stiff-pump approximation.

Following the same procedures discussed above, the lowest
order solution of signal and idler mode fluxes are in first order
and are given by the ideal parametric amplifier solution in
Eq. (27). However, the next nonzero correction to signal and
idler mode fluxes appears at fifth order with the corresponding
drive term,

2 (1 2 1
517 _ 0l Facl 0”10 0e +2(00) 0} 0
[god ]_ |(pa | (1)2 (1), % :
lal 9" 9"
(54)
The saturation flux given by this order of perturbation theory
obeys

g 1/4
qoa,m,ﬂdm(l—) G, (55)

This limit does not depend on g either. With StP seventh-order
truncated nonlinear model, where we include third-, fifth-,
and seventh-order nonlinear couplings in JPA Lagrangian
(even orders are turned off at ¢.x = 27), the existence of
the seventh-order nonlinear couplings contributes to a small
correction to the saturation flux at large 8. However, the
fifth-order term remains the dominant factor in determining
the saturation flux.

To conclude this section, for a JRM-based JPA that is
operated at the nulling point with fixed mode frequencies and
mode linewidth, saturation flux can be increased by increasing
B, which suppresses the effects of generated Kerr couplings.
As we move to large-f regime, if we want to further improve
the saturation power of the amplifier, we need to reduce
the fifth- and higher order nonlinear coupling strengths with
respect to the third-order coupling strength in the Lagrangian.
In Ref. [24], we notice that the imperfect participation ratio
p # 1 caused by nonzero linear inductance in series of JRM
circuit is one of the candidates for the suggested suppression,
which will be discussed in the following sections.

V. EFFECTS OF PARTICIPATION RATIO

In this section, we focus on the effects of reducing partici-
pation ratio by introducing outer linear inductors in series with
the JRM circuit [Lo, in Fig. 7(a)].

When there are external resonators connected to the JRM,
the flux injected from the microwave ports is shared between
the JRM and the external resonators and hence the JRM
nonlinearity is attenuated. To model this effect, four outer
linear inductors L, are added in series with the JRM circuit
[see Fig. 7(a)]. These inductors and the JRM can be treated
as a “flux-divider” type of circuit. Further, as the input-output
ports are connected to the outer nodes and there is no capaci-
tors connecting the inner nodes to ground, we treat the fluxes
of outer nodes (@;) as free coordinates, while the inner node
fluxes (¢;) are restricted by the Kirchhoff’s current relation.
The potential energy of JRM becomes

E = Eoy + Elrm

% (56)
=> LO (@ — 90" + Erm(@1, 92, 93, 9a).
. out
The EOM for node flux @; are
¢+ =— @ — ) = In, (57)
J CjLQut J J J

where j =1, 2, 3, 4 and the node capacitance C; = C, for j =
1,3 and C; = G, for j = 2, 4. The right hand side, [, ;, is the
corresponding input terms derived in Eq. (19) for each node
flux. The inner node fluxes ¢; are restricted by

~ 1 . Pext
Q=9 +¢ ESIH(% — Qj+1 +T>

1 . Pex 1
_Esm(%_l—(p‘;—i- Zt)—i-z 3@—2 Ok R
k#j

(58)
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FIG. 7. In panel (a), we show a more realistic circuit model for JRM, in which we include stray inductance Ly, in series of Josephson
junctions and outer linear inductance L, in series of JRM. The fluxes associated with each nodes are labeled on the plot. In panels (b) and (c),
we calculate the Kerr coupling strength &, (b) and k,;, (c) as we sweep external magnetic field bias .y, when participation ratio 1/p = 1.1. The
perturbation solution (lines) and numerical solution (dots) agree well. In panel (b), for all three 8 values, the self-Kerr coupling strength &, can
always be turned off at the Kerr nulling point ¢, = 27r. However, in panel (c), we notice that the magnetic field bias ¢y, to turn off cross-Kerr
coupling k., depends on the choice of . This means the exact Kerr nulling point of the does not exist any more when the participation ratio
is not unity. Parameters chosen: three mode decay rates are y /(27) = 0.1 GHz, the critical current of the junctions is i. = 1.0 nA. The outer
linear inductance ratio { = 0.1. The rest of the circuit elements are set by the mode frequencies at ¢.,, = 27, and they remains when we tune

the external flux bias.

where ¢ = Lo, /Li, and we apply index conventions that ¢y =
@4 and @s = @;. As the symmetry of the JRM still persists,
the normal mode profiles in terms of the outer node fluxes @’s
are identical to the ones without outer linear inductance; i.e.,
the normal mode coordinates are given by [&y] = [A~'].[@],
where the model matrix [A] is identical to Eq. (8). This can
also be derived from the linearization of the JPA’s EOMs
[Eq. (57)] and the constraints in Eq. (58). But the frequencies
of the normal modes are shifted,
1 B +2cos (&)

2
W2y = . (59)
O 2C, ) Lin B+ BE +2¢ cos (£2)

1 4 cos (£
o = prdeos(f) (59b)
CeLin B+ BC + 4L cos (L)
4C,Cp

where C, = co

The question of how the nonlinear couplings shift when we
add L, into the JRM circuit is hard to directly analyze by the
expanding the JRM potential energy in terms of normal modes
around the ground state, as the constraints [Eq. (58)] are hard
to invert. To obtain the nonlinear coupling strengths, we can
either numerically calculate the derivatives of the potential
energy with respect to the mode fluxes or using analytical per-
turbation expansion to get an approximate inversion relation
of Eq. (58) and find the nonlinear couplings. Here we stop at
fourth-order nonlinearities (in energy).

To solve the self-Kerr k;; and cross-Kerr k;; nonlinear cou-
pling strengths, we can calculate the fourth-order derivatives
of the circuit potential energy E with respect to the normal
coordinates @,, ¢p, and @, i.e.,

1 9*€ 1 9%
Jji = A a~40 ij = ~ Do~ (60)

24 09 ; 40p:09 ;
where £ is dimensionless energy of JRM circuit defined as
& = (Lin/})E.

It is straightforward to use inner node fluxes to express the

energy E in Eq. (56) and hence find an analytical expression
for the derivatives with respect to inner node fluxes. However,

to calculate derivatives with respect to the outer node fluxes
requires the Jacobian matrix [J] = [g—g], which effectively
requires inversion of the constrains in Eq. (58).

To analytically solve this problem and give us a hint on how
the outer linear inductance will affect the nonlinear couplings,
we apply the perturbation expansion around the ground state
(@; = 0) to obtain an approximate inverse transformation and
find the Jacobian. To simplify the discussion, we assume
C, = C,. We note that this assumption does not affect the
nonlinear coupling strengths which are independent of the ¢
mode. Further, the method we discussed below can be easily
generalized to the case when C, # Cp.

We at first define a set of new variables using the normal
mode transformation matrix [.4], but use the inner node fluxes
instead, noted as [¢y] = [A~'].[¢]. Therefore, the relation
in Eq. (58) using normal coordinates [@y/] and inner node
coordinates [¢y] is

_— . 209 .0
¢i=0+e;+(2) B awjglRM’

where S}givl is given in Eq. (28), the factor (2) only exists for
a and b modes. Here we only focus on the three nontrivial
modes, @,, @», and @.. The circuit ground state is assumed
to be stable and at @, = @, = . = 0 (which we confirm
numerically). Further, at this stable ground state, the inner
node fluxes are also zero. Since we only focus on the Kerr
coupling strength in the vicinity of the ground state, the exact
inner node fluxes that obey the inverse relation of Eq. (61) can
be expanded in series of the small oscillations of the normal
modes @;’s. Thatis, ¢; ~ 0+ 90;1) + (pj.z) + ...

We plug the expansion of inner node fluxes back to Eq. (58)
and match the terms with order by order. The lowest order
solutions appear at the first order in normal coordinates

(61)

2 (94 -
Vo = [1 - Fg cos (¢4t)} Bop  (622)
) a¢ Gexi\ |7
. =[1+§+FCOS< 1 )] @ (62b)
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At this order, we can extract the definition of partic-
ipation ratio for signal and idler mode as p,, =[1+
¢+ %cos(%)]_l and for pump mode as p. =[1+¢ +
% cos(%)]‘l. If we bias the circuit at @y = 27, all three
participation ratios become py = ﬁ

The second-order correction to the inner node fluxes are

2 x

%(12) = p, 2 ¢ sin (‘Pe 1)%(71)(&(_1)’ (63a)
B 4
2 x

o = py=s-sin (£)eiPel, (63b)
B 4

(,022) = p. %sm (‘pzxt)(p;l) ;l). (63¢)

The correspondm% approx1mazte inverse transformation of
Eq. (58) is ¢; ~ ¢} (@) + ¢}” (@) for j = a, b, c. Atsec-
ond order, it is sufﬁc1ent to calculate the three-mode coupling

J

strength, as we only need at most the second-order derivatives
to the Jacobian matrix elements. The dimensionless three-
mode coupling strength is

3
09040909,
where g(0) is the three-mode coupling strength with unit
participation ratio. Based on Eq. (64), decreasing the par-
ticipation ratio by increasing Loy, reduces the corresponding
third-order coupling strength, which is beneficial to reduce
the limitation placed by the effective cross-Kerr nonlinearity
generated by SoP third-order nonlinear couplings, and hence it
is beneficial to improving the saturation power of the amplifier
in the small g regime.

However, to calculate the fourth-order derivatives, we need
at least third-order correction to the inner node fluxes. Follow-
ing the same strategy, the third-order correction of the inverse
transformation for normal coordinate ¢, is

gi) = = paprp:8(0), (64)

Paé' Dext \ ~ p§p2§ Pext . Dext\ ]~ -~
o = 128 cos( Z )(ps + 4,83 [/3 cos( Z ) + 8p¢ sin’ ( Z )]%(pg
+ 2 ;’;‘2 [Boos (524) +4put sin® (52 [pua? (65)

and the relations for (p(3) and ¢ can be derived similarly. The inverse relation from Eq. (58) is ¢ o~ (p;l)({gb}) + goj»z)({gb}) +

m({go}) The Kerr coupling strengths can be obtained from Eq. (60) with Jacobian derived from the perturbation expansion.

For example, k,p, is

BB + ¢)cos (&) +2¢[ -

3 4 cos (‘pe“) + SSln(

kab(g) = -

i} 66)

168 + B¢ + 2¢ cos (“’“‘)] [B + B¢ +4¢ cos (%)

The self-Kerr coupling strength k,, and the cross-Kerr
coupling strength k,, are plotted in Figs. 7(b) and 7(c),
respectively. The Kerr nonlinear coupling strengths (k,, and
k) are calculated via both numerical method (dots) and the
above perturbation method (lines). In all three 8 values, the
perturbation analysis matches the numerical solution well.
Further, we notice that the self-Kerr coupling strength can still
be turned off at the @exc = 27 (Kerr nulling point) no matter
what B8 value we choose [see Fig. 7(b)]. But the cross-Kerr
couplings cannot be turned off at this magnetic bias point
when participation ratio is not unity [see Fig. 7(c)].

The breakdown of the universal Kerr nulling point is also
demonstrated by Eq. (66). The ¢y that makes the numerator
of Eq. (66) zero depends on the choice of B and ¢. This
indicates that as we turn the participation ratio to be smaller
than unity, some nonlinear couplings that are previously killed
by Kerr nulling point can reappear in the JPA Lagrangian.
These extra nonlinear couplings are a consequence of the non-
linearity of the inner JRM circuit. As we mentioned, the JRM
circuit with outer linear inductance shown in Fig. 7(a) can
be treated as a phase divider; i.e., the phase across the outer
nodes is divided by the phase across the outer linear inductors
(Lowt) and the phase across the inner JRM nodes governed
by the effective inductance of the inner JRM. Naively, if the
divider is linear, we would expect the JRM with outer linear
inductance generates nonlinear coupling strengths that are

(

suppressed by the participation ratio (which does not depend
on the mode flux); e.g., k() = p2prkay(0) and kq»(0) = 0
is the cross-Kerr coupling strength of a JRM without outer
linear inductance. However, as the effective inductance of
inner JRM circuit is nonlinear, the total phase is not divided
linearly, i.e., the more precise participation ratio defined as
p = @/¢ will change as the input flux oscillates as it is indeed
a function of the outer node fluxes. Therefore, the normal
modes experience extra nonlinearities as compared to the
naive analysis. The reappearance of these extra nonlinearities
will limit the saturation power of the amplifier.

However, for a general ¢ex, the Kerr couplings are sup-
pressed roughly by ~p*. If we calculate one order up, the
fifth-order nonlinear coupling strength is suppressed by ~p°.
This indicates that the nonunity participation ratio can help to
suppress the higher order nonlinear couplings with respect to
the third order, which is beneficial for improving the satura-
tion power of the amplifier. We will focus on the quantitative
understand of how these two factors compete with each other
and further optimize the saturation power of the amplifier in
next section.

VI. OPTIMIZING THE JPA USING PARTICIPATION RATIO

As demonstrated in the above section, the outer linear
inductance impacts the saturation power of the JPA in both
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negative and positive ways. In this section, we describe the
effects of the outer linear inductance quantitatively using nu-
merics to obtain the saturation power of the JPA as we sweep
the JRM inductance ratio (8) and participation ratio (p).

Because of the presence of the outer linear inductance,
even order nonlinear coupling terms reappears in the EOMs.
The presence of these higher order couplings results in a shift
of the mode frequencies. For example, the nonzero cross-Kerr
coupling strength k,.¢2¢? and kj.p7¢? causes the signal and
idler mode frequencies to be dependent on the pump mode
strength, which shifts the signal and idler mode frequencies
away from the bare mode frequencies calculated from the nor-
mal mode analysis. To correctly pump the amplifier with the
sum frequency of mode and idler mode frequencies and probe
the signal with the correct signal mode frequency, as well
as set the amplifier’s small-signal reflection gain to 20dB,
we need to adjust the pump tone frequency and pump tone
strength at the same time. Before we perform the numerical
calculation of the amplifier’s reflection gain as we tune the
input tone strength and extract the saturation power, we need
to find the correct pump configurations and the signal mode
frequency under that pump configuration.

To compensate for the frequency shifts and find the op-
timum pump configuration and corresponding signal mode
frequency for JPA, we numerically optimize the pump tone
frequency and strength. To solve this optimization problem,
we notice that the amplifier is expected to consume the least
pump tone input flux to reach the desired small-signal reflec-
tion gain when the amplifier is perfectly on resonance with
its mode frequencies, i.e., wg = @, and wp = w, + wp. There-
fore, we split the optimization process into two optimization
tasks: (1) for a given input pump tone strength ¢, j,, find the
optimimal pump tone frequency and signal mode frequency
and (2) find the desired pump tone strength ¢, i, to get 20 dB
small-signal reflection gain with the corresponding optimized
pump tone frequency. In (1), we fix the pump tone strength
¢..in and sweep signal tone and pump tone frequencies to find
the parameters which maximize the reflection gain (a typical
sweep is shown in Fig. 8). In (2), we use a binary search
to find the desired pump strength ¢, ;, for 20dB reflection
gain.

The resulting saturation power sweep of the JPA is shown
in Fig. 1(a). In the large-B regime (8 > 4.0), as we decrease
the participation ratio, the saturation power increases. How-
ever, at the same time, the pump power for 20-dB reflection
gain also increase, until the JRM reaches the full nonlinear
regime and we cannot inject enough power to get 20-dB
reflection gain anymore. However, in the low-8 regime (8 <
4.0), when the participation ratio is less than unity, even
though we first optimize the pump configuration to compen-
sate for mode shifting, we still found that the reflection gain
of the amplifier increases before it starts to drop (“shark fin”).
This causes the amplifier to saturate as gain increases to 21 dB.
If we move out of this regime by reducing the participation
ratio or increase B, the “shark fin” reduces and we find a band
of sweet spots of the JPA saturation power. The reflection gain
of the JPA with configurations around one of the sweet spots
is shown in Fig. 9(a), with the the blue curve corresponding to
the sweet spotat 8 = 3.5, 1/p = 7.0. As we decrease § to 3.0,
the JPA saturates as gain touches 21 dB [green dash-dotted

Ref. Gain (dB)
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FIG. 8. The optimization of the pump configuration. We sweep
the signal mode detuning § = ws — @, and the pump tone detuning
€p, = wp — (&, + @) and fix the pump tone strength. The maximum
gain is labeled by the black dot. The maximum gain is achieved
when the signal tone matches the mode frequency and the pump
mode matches the sum frequency of the signal and idler mode. The
parameters used: y /2w = 0.2 GHz, &,/27 = 7.5 GHz, &,/2n =
5.0 GHz, 8 =3.0,1/p = 8.0.

curve in Fig. 9(a)], while as we increase 8 to 4.0 the “shark
fin” disappears but the saturation power decreases.

To understand the dominating limitations placed by differ-
ent nonlinear terms in the JPA Hamiltonian, especially around
the sweet spot, we truncate the Hamiltonian order by order
and analyze the performance of the truncated model. We keep
the pump configurations identical to the full-order analysis
and increase the truncation order from third order to eighth
order. In Fig. 9(b), we focus on the sweet spot 8 = 3.5, 1/p =
7.0, and compare the truncated theory with the full-nonlinear
solution. At small signal input, the nonlinear couplings up to
secventh order are needed to converge to the desired 20-dB
reflection gain. This is a sign that the high-order nonlinear
coupling terms play an important role in the dynamics of the
JPA. As we increase the signal power, the truncation to fourth-
order analysis does not show an obvious “shark fin” feature.
However, when we include the higher order coupling terms,
e.g., fifth to eighth, the “shark fin” appears. The truncated
fifth-order analysis supports another mechanism that causes
the amplifier to saturate to 21 dB which is different from the
one discussion in Ref. [24]; that is, the fifth-order terms, e.g.,
©20.0p@. term, can shift the bias condition by shifting the
effective third-order coupling strength to drive the amplifier
toward the unstable regime, causing the reflection gain to rise.
Further, as we discussed above, the external linear inductors
break down the perfect nulling point for even order nonlinear
couplings; the sixth-order and eighth-order terms can survive
at the nulling point. From fifth- order to eighth-order trun-
cation, the large signal input behavior oscillates, which is a
sign that we are reaching the convergence point of the series
expansion caused by the competition between different orders.
We also compare it with a point away from the sweet spot in
Fig. 9(c) (B = 3.5, 1/p = 4.0). At this point, the fifth-order
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FIG. 9. In this plot, we show the reflection gain of the amplifier
as we increase the input signal power. We focus on a point which is
away from the boundary shown in Fig. 7(a). We test the reflection
gain of the truncated model for § =4.5 and 1/p ~ 4.0 as we
increase the input signal power P, ;, in panel (c). In the calculation
for the truncated model, we only truncate the JRM potential energy
to the desired order, but fix the pump configuration as the full-order
case. The reflection gain solved from truncated model also converge
to the full-order analysis (red solid line) pretty well we truncated to
seventh order. But as we decrease p further to push the configuration
closer to the boundary (1/p = 7.0), the higher order terms are needed
to have a good approximation to the full-order performance.

truncation already converges to 20-dB reflection gain and the
seventh-order theory gives a good approximation to full order
analysis with moderate input signal power. We conclude that
the boost in performance of the amplifier at the sweet spot is

aresult of taking advantage of all orders, and hence cannot be
modeled using a low-order truncated theory.

VII. EFFECTS OF TUNING THE EXTERNAL MAGNETIC
FIELD, DECAY RATES, AND STRAY INDUCTANCE

In this section, we further explore how the saturation power
of the amplifier is affected by the magnetic field bias (¢ey;), the
modes’ decay rates (y), and stray inductance in the JRM loop
[Lstray in Fig. 7(a)].

In Fig. 10, we plots the saturation power of the amplifier
as we perturb the magnetic field bias and decay rates of
JPA. Here we focus on the line of 1/p = 7.0 in Figs. 10(a)
and 10(b), and focus on the line of § = 3.5 in Figs. 10(c)
and 10(d). In Figs. 10(a) and 10(c), we explore the effects
of tuning the magnetic field bias. We at first set the JPA
circuit parameters at @.x = 2. We then operate the JPA at
Yext = 1.9 and @y = 2.1, respectively. We notice that as
we perturb the magnetic field to @ = 1.97, the optimum
saturation power is achieved at larger 8 values [see Fig. 10(a)]
and smaller participation ratio p [see Fig. 10(c)]. By tuning g,
the saturation power of the amplifier improves from —104.8 to
—103.9 dB m, while by tuning p, it improves to —104.1 dB m.
This indicates that the optimal magnetic field bias occurs
at somewhat lower magnetic field as compared to the Kerr
nulling point. The corresponding sweet spot of the amplifier
has larger B and lower p compared to the present setting.

In Figs. 10(b) and 10(d), we change the JPA modes’ decay
rates by 10 MHz to explore the effects of different decay
rates on the JPA saturation power. In the large-8 regime,
increasing the JPA mode decay rates causes the regime in
which we cannot obtain 20-dB (see Fig. 1) gain to become
larger. For example, at y /27 = 0.21 GHz, the JPA with 8 =
6.0 and 1/p = 7.0 can no longer reach 20-dB reflection gain
while a comparable JRM with y /27 = 0.20 GHz could. The
amplifier’s optimum saturation power is also achieved at a
lower B value as we increase the decay rates [see Fig. 10(b)].
However, as we tune the decay rates by =10 MHz, the max-
imum saturation power of the amplifier at 1/p = 7.0 shows
little change. Similarly, in Fig. 10(d), we perturb the modes’
decay rates by =10 MHz on JPA with different p but a fixed
B (B =3.5). The amplifier’s optimum saturation power is
achieved at a lower p value as we decrease the decay rates
[see Fig. 10(d)], while the maximum saturation power of the
amplifier still shows little change.

Finally, we consider the effect of stray inductors (Lgay in
Fig. 7). We include stray inductance such that & = L.y /Ly =
0.1 and compare the reflection gain of the amplifier as we
increase the signal power (P,). Note that when the stray
inductance is nonzero, the Kerr nulling point is shifted away
from @exy = 27 (see discussion in Subsec. A 1), and especially
that when o = 0.1, the Kerr nulling point is at @ex; ~ 2.497.
We will operator the JPA at this magnetic field bias when the
participation ratio is not unity. In Fig. 11, we compare three
different settings of JPA, 1/p =7.0, 8 = 3.0 (blue curves),
1/p=7.0, B = 3.5 (orange curves), and 1/p =7.0, 8 =4.0
(green curves). In all three different sittings, we notice
enhancement of the “shark fin,” which causes the JPA at the
previous sweet spot (8 = 3.5, orange dashed curve) saturates
to 21 dB instead, which greatly reduce the saturation power at
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FIG. 10. The saturation power of the JPA with external magnetic field bias and mode decay rates’ perturbation. In panels (a) and (c), we
perturb the JPA external magnetic field bias from 27 by +0.17. We assume the JPA circuit parameters are fixed with bias ¢y, = 27, and then
we operate the JPA at the perturbed magnetic field bias. In panels (b) and (d), we set the circuit parameters of JPA to change the modes’ decay
rates from y /27 = 0.2 GHz by £10 MHz. In panels (a) and (b), we focus on the JPA settings with 1/p = 7.0 and investigate the effect of the
perturbation, while in panels (c) and (d), we focus on the settings with 8 = 3.5.

this point (from —104.8 to —120dB m). At 8 = 4.0, without
stray inductors, the reflection gain of the amplifier monoton-
ically decreases as the signal power increases (dashed green
line), while at « = 0.1 there is a shallow increases (see solid
green line). Besides, the saturation power slightly drops from
—107.5 to —108.7 dB m.
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FIG. 11. We compare the saturation power of the amplifier with-
out stray inductance (« = 0, dashed curves) and with stray induc-
tance (¢ = 0.1 slide curves). We tested three different settings of
JPA, B = 3.0, 3.5, and 4.0, respectively. All of them have 1/p = 7.0.
We compare the reflection gain of the amplifier as we increase
the signal power P,. For all three cases, the saturation power is
suppressed. The existence of the stray inductance enhances the shark
fin, which causes the amplifier at previous sweet spot (1/p = 7.0 and
B = 3.5) saturates to 21 dB instead.

VIII. SUMMARY AND OUTLOOK

In conclusion, we have investigated the nonlinear cou-
plings of the JRM-based JPA and how these different non-
linear couplings control the performance of the parametric
amplifier. In our analysis, we have adapted both perturbative
and time-domain numerical methods to give us a full un-
derstanding of the circuit dynamics. By considering the full
nonlinear Hamiltonian of the device, we show that we can
fully optimize the performance of the amplifier, and achieve
an ~10 to 15dB improvement of the saturation power of
the JRM-based JPA for a range of circuit parameters. Our
method for numerically modeling multiport circuits of induc-
tors, capacitors, and Josephson junctions is also applicable
to more complex circuits and pumping schemes, which can
create JPAs with addition virtues such as extremely broad (and
gain-independent) bandwidth and directional amplification
[15,17,18,32,42,43].
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APPENDIX

1. The effect of stray inductance with unit participation ratio

In this section, we focus on the effect of the existence of
nonzero stray inductance with unit participation ratio. This
discussion is also provided in Ref. [17].

The circuit model of JRM circuit with stray inductance is
in Fig. 7(a). When the stray inductance is nonzero, similar to
shunted JRM circuit, we can write the potential energy of JRM
circuit as

Egy = 5~ Z«p, oe) + ZEM«S ), (AD

arm> 1S
the total energy of the stray inductor and the Josephson
junction on one arm of the JRM, §; = ¢; — @;11 + %= is the
total phase difference across the jth arm. Take one of the arms
as an example:

where ¢p = %((pl + @2 + 3 + ¢4), the arm energy, E,

2 2

2 ¢0 ( ‘pext)
— — COS
> Lmy (o1 — 95) L 05 — @2+ 2

(A2)

Hym(81) =

where the phase on node ¢s is constrained by the current
relation at the corresponding node,

81 — Ap = a sin (Ag), (A3)

where o = Lgray/Ly, 81 = 1 — @2 + & is the total phase
difference of the arm and Ag is the phase across the junction,
defined as Agp = ¢s — ¢ + “’jf‘. Suppose we focus on the
case where the external magnetic flux is around 27, when o
is small (¢ < 2.80); then the nonlinear relation in Eq. (A3)
only has a single root when the total phase across the arm is
determined.

To determine the self-Kerr k;; and cross-Kerr &;; coupling
strengths, we can use the derivatives of the dimensionless

JRM energy as

k.._imﬂ ki — 1 9%Emm (A4)
T4 9t T Y 4a¢a¢'

Before we carry on the derivative, we appreciate the facts that
the phase difference across the arms are linearly dependent
on the node fluxes and the node fluxes are linearly depen-
dent on the normal mode coordinates. Since the inner linear
inductance only contributes the energy which is quadratic to
the node phases, there will be no contribution to the Kerr
couplings. Because the four arms of the JRM are symmetric,
the arm Hamiltonian for four arms should have identical form
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FIG. 12. The stability diagram of the ground state of the JPA
when we have nonzero stray inductance. We assume L, = 0 and
set B = 4.0. The blue region (labeled as “stable”) shows the stable
region of the JPA ground state, while in the orange region (labeled
as ‘“2-fold”), the JPA ground state is doubly degenerate. In the red
region (unlabeled region), JPA has a fourfold degenerate ground
state. The green line shows the position of the nulling point.

in terms of the phase difference §. To finalize the calculation,
the fourth-order derivatives with respect to normal modes in
general can be calculated as

84 Z 34
5JRM garm (81)
2 2 2
T 0¢i09;

38, \2/ 38, \*
=% (o) (50) () -

Therefore, for both self-Kerr couplings and cross-Kerr cou-
plings, there is a common factor 35 Eym, 0 that the null point
still exists at the external magnetic bias to let 3§ Eym = 0.

However, as we increase the stray inductance ¢, which ef-
fectively decreases the inductance ratio 8, it causes the ground
state to be more unstable. Adding to it, increasing o causes
the null point to shift from ¢ = 27 to higher magnetic bias.
At a relatively large «, the null point may end up in the
unstable regime and become unreachable in real experiments.
In Fig. 12, we plot the ground-state stability diagram as we
change external magnetic flux and «, we further plot shifting
of the nulling points as we change o [green curve in Fig. 12].
In Fig. 12, we set the JRM inductance ratio 8§ = 4.0 and
when « ~ 0.4, the null point hits the boundary of the unstable
regime, which means the null point does not exist in the
experiment any longer.
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