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We develop and demonstrate a trainable temporal post-processor (TPP) harnessing a simple but
versatile machine learning algorithm to provide optimal processing of quantum measurement data
subject to arbitrary noise processes, for the readout of an arbitrary number of quantum states. We
demonstrate the TPP on the essential task of qubit state readout, which has historically relied on
temporal processing via matched filters in spite of their applicability only for specific noise conditions.
Our results show that the TPP can reliably outperform standard filtering approaches under complex
readout conditions, such as high power readout. Using simulations of quantum measurement noise
sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that
account for general quantum noise correlations in data, such as those due to quantum jumps, or
correlated noise added by a phase-preserving quantum amplifier. Furthermore, for signals subject
to Gaussian white noise processes, the TPP provides a linearly-scaling semi-analytic generalization
of matched filtering to an arbitrary number of states. The TPP can be efficiently, autonomously,
and reliably trained on measurement data, and requires only linear operations, making it ideal
for FPGA implementations in cQED for real-time processing of measurement data from general
quantum systems.

I. INTRODUCTION

High fidelity quantum measurement is essential for any
quantum information processing scheme, from quantum
computation to quantum machine learning. However,
while measurement optimization has focused on quan-
tum hardware advancements [1–3], several modern exper-
iments operate in regimes where optimal hardware con-
ditions are difficult to sustain, or - for machine learning
with general quantum systems [4–8] - may not always be
known. For example, in the push towards higher qubit
readout fidelities with complex multi-qubit processors in
circuit QED (cQED), optimization of individual readout
resonators becomes increasingly difficult. More impor-
tantly, finite qubit coherence means that simply extend-
ing the measurement duration is not a viable option to
enhance fidelity: faster and hence higher power measure-
ments are needed. However, these readout powers are
associated with enhanced qubit transitions, leading to
the T1 versus n̄ problem [9–14] and excitation to higher
states [14, 15] outside the computational subspace. Ma-
chine learning with quantum devices operating in un-
conventional regimes allows for an even broader range
of complex dynamics. Quantum measurement data ob-
tained under these conditions cannot be expected to be
optimally analyzed using schemes built for more standard
readout paradigms [16]. Therefore, a practical approach
to extract the maximum information possible from such
data is timely.

In this paper, we demonstrate a machine learning
scheme to optimally process quantum measurement data
for completely general quantum state classification tasks.
For the most common such task of qubit state read-
out, standard post-processing of measurement records
has remained relatively unchanged (with some excep-
tions [17, 18]): data is filtered using a “matched filter”

(MF) constructed from the mean of measurement records
for two states to be distinguished (for example, states |e⟩
or |g⟩ of a qubit). Crucially, the MF thus defined applies
only to binary classification, and much more restrictively
is optimal only if readout is subject to Gaussian white
(i.e. uncorrelated) noise process [19]. In many cases, an
even simpler (and less optimal) boxcar filter is employed,
due to the ease of its construction. Our approach har-
nesses machine learning to provide a model-free train-
able temporal post-processor (TPP) of quantum mea-
surement data in general noise conditions, and for an ar-
bitrary number of states of a generic measured quantum
system ([20] for source code). We test our approach by
applying it to the experimental readout of distinct qubits
across a range of measurement powers. Our results show
that the TPP reliably outperforms the standard MF un-
der complex readout conditions at high powers, providing
in certain cases a reduction in errors by a factor of sev-
eral. Furthermore, the TPP achieves this improvement
while requiring only linear weights applied to quantum
measurement data (see Fig. 1): this makes it compati-
ble with FPGA implementations for real-time hardware
processing, and exacts a lower training cost than neural
network-based machine learning schemes [21, 22].

Machine learning has already been established as a
powerful approach to classical temporal data processing,
providing state-of-the-art fidelity in tasks such as time se-
ries prediction [23], and chaotic systems’ forecasting [24–
26] and control [27]. Adapting this approach to quantum
state classification as we do here requires its application
to time-evolving quantum signals. Signals extracted from
the readout of quantum systems are often dominated by
noise, making their processing distinct from that required
of typical data from classical systems. More importantly,
the noise in such signals can arise from truly quantum-
mechanical sources, such as stochastic transitions be-
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tween states of a multi-level atom (quantum ‘jumps’),
or vacuum fluctuations in quantum modes. A key find-
ing of our work is that the TPP is able to learn from
precisely these quantum noise correlations in data ex-
tracted from quantum systems to improve classification
fidelity. To uncover this essential principle of TPP learn-
ing, we first develop an interpretation of the TPP as the
application of optimal filters to quantum measurement
data. This provides a framework to quantify and visu-
alize what is ‘learnt’ by the TPP from a given dataset.
Secondly, TPP learning is tested on simulated quantum
measurement datasets using stochastic master equations,
where quantum noise sources and hence their correlation
signatures in measured data can be precisely controlled.

Using simulated datasets where all noise sources con-
tribute additive Gaussian white noise - a reasonable as-
sumption for measurement chains under ideal conditions
- we show that the TPP provides filters that reduce ex-
actly to the matched filter for binary classification. More
importantly, as the TPP is valid for the classification of
any number of states, it provides the generalization of
matched filters for arbitrary state classification. We then
provide a systematic analysis of TPP applied to quantum
measurement with more complex quantum noise sources,
such as quantum amplifiers adding correlated quantum
noise, or noise due to state transitions. In such scenar-
ios, the TPP filters can deviate substantially from filters
learned under the white noise assumption. Crucially,
these noise-adapted TPP filters outperform generalized
matched filters. By learning from quantum noise correla-
tions, the TPP therefore utilizes a characteristic of quan-
tum measurement data inaccessible to post-processing
schemes relying on noise-agnostic matched filtering meth-
ods.

The established learning principles provide a structure
to the general applicability of the TPP, which we believe
enhances its practical utility. First, the exact mapping to
matched filters under appropriate noise conditions places
the TPP on firm footing, guaranteed to perform at least
as well as these baseline methods. Secondly, and much
more importantly, the TPP’s ability to learn from noise
(crucially, quantum noise) renders it able to then beat
the MF when noise conditions change. This theoret-
ical adaptability becomes practical due to the TPP’s
straightforward training procedure, which is also ideal
for autonomous repeated calibrations, necessary on even
industrial-grade quantum processors [28–30]. Ultimately,
the trainable TPP could provide an ideal component to
optimally process quantum measurement data from gen-
eral quantum devices used for machine learning, which
could exhibit exotic quantum noise characteristics.

The rest of this paper is organized as follows. In
Sec. II we introduce the quantum measurement task we
use as an example to demonstrate the TPP: dispersive
qubit readout in the cQED architecture. In Sec. III we
then introduce our temporal post-processing framework
to multi-state classification: a model-free supervised ma-
chine learning approach that can be applied to the clas-

e.g. Qubit measurement chain
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Figure 1. Temporal post-processor (TPP) for multi-
state classification using quantum measurement data,
demonstrated for dispersive qubit readout in cQED.
The objective is to process temporal data corresponding to an
unknown state (indexed σ) of an arbitrary physical system -
here the state of a qubit in a quantum measurement chain -
to estimate the true label σ with maximum accuracy. The
TPP approach uses a set of weights W and biases b to map
the vector x⃗ of measured data, comprising an instance of NO

observables each a time series of length NT, to the corners
of a hypercube in C-dimensional space. Optimal values of
W and b are learned by training to realize this mapping with
minimal error, in a least-squares sense. Scatter plots shown in
C = 3 dimensional space are data from real qubit p ∈ {e, g, f}
readout after the TPP.

sification of arbitrary time series. Importantly, we draw
connections between the TPP approach and standard
filtering-based approaches to qubit state measurement.
In Sec. IV, we apply the developed TPP framework
to experimental data for qubit readout, showing that
it can outperform standard matched-filtering at strong
measurement powers relevant for high-fidelity readout.
Sec. V delves into the aspects that enable the TPP to
learn filters that can be more effective than standard
matched filters using controlled simulations. We con-
clude with a discussion on the general applicability of
TPP for quantum state classification and temporal pro-
cessing of quantum measurement data.

II. STANDARD POST-PROCESSING FOR
DISPERSIVE QUBIT READOUT

A. Quantum measurement chain for dispersive
qubit readout

The standard quantum measurement chain for hetero-
dyne readout in cQED is depicted schematically in Fig. 1,
and can be modeled via the stochastic master equation
(SME):

dρ̂c = Lsysρ̂c dt+ Lenvtρ̂c dt+ Lmeas[dW ]ρ̂c. (1)

Here the Liouvillian superoperator Lsys defines the quan-
tum system whose states are to be read out. We em-
phasize that the TPP approach enables classification for
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completely general Lsys. For relevance to cQED appli-
cations, in this paper we choose to focus on dispersive
qubit readout, where the system comprises a multi-level
artificial atom (here, a transmon) dispersively coupled
to a readout cavity that is driven using a coherent tone
at frequency ωd. Then, Lsysρ̂ = −i[Ĥdisp, ρ̂], where the
dispersive Hamiltonian Ĥdisp for a multi-level transmon
takes the form (for cavity operators in the interaction
frame with respect to ωd and setting ℏ = 1)

Ĥdisp ≃
∑
p

ωp|p⟩⟨p| −∆daâ
†â+

∑
p

χpâ
†â|p⟩⟨p|. (2)

Here ∆da = ωd − ωa is the detuning between the cavity
and the readout tone at frequency ωd, while χp is the
dispersive shift per photon when the artificial atom is in
state |p⟩ [31, 32]. The general Liouvillian Lenvt is then
used to describe all losses through channels that are not
directly monitored, such as transmon transitions.

The final superoperator Lmeas defines measurement
chain components that are actively monitored to read
out the state of the quantum system of interest. Here,
we consider continuous heterodyne monitoring of a sin-
gle quantum mode of the measurement chain, generally
labelled d̂. In the simplest case, Lmeas defines readout of
the cavity itself (then, d̂ → â); however, it can also de-
scribe the dynamics (coherent or otherwise) of any other
monitored quantum devices in the measurement chain.
The most pertinent example is readout of the signal mode
of an (ideally linear) quantum-limited amplifier that fol-
lows the dispersive qubit-cavity system via an interme-
diate circulator, as shown schematically in Fig. 1. Most
generally, Lmeas can describe the monitoring of several
modes of a general quantum nonlinear processor that
is embedded in the measurement chain [5]. Crucially,
Lmeas must include a stochastic component (indicated
by the Wiener increment dW ), describing measurement-
conditioned dynamics of the dispersive qubit-cavity sys-
tem under such continuous monitoring (see Appendix B).

For a qubit in the (a priori unknown) initial state |σ⟩
before measurement, continuous monitoring of the mea-
surement chain then yields a single ‘shot’ of heterodyne
records {I(σ)(t), Q(σ)(t)} contingent on this state σ. The
complexity of this readout task can be appreciated given
the form of raw heterodyne records even under a simpli-
fied theoretical model:

I(σ)(ti) =
√
κ⟨X̂(σ)(ti)⟩c + ξI(ti) + ξclI (ti), (3a)

Q(σ)(ti) =
√
κ⟨P̂ (σ)(ti)⟩c + ξQ(ti) + ξclQ(ti). (3b)

We consider discretized temporal indices ti, for i ∈
[NT] and NT = Tmeas/∆t, where Tmeas is the total
measurement time and ∆t is the sampling time set
by the digitizer. Heterodyne measurement probes the
canonical quadratures X̂ = 1√

2
(d̂ + d̂†), P̂ = −i√

2
(d̂ −

d̂†) of the mode d̂ being monitored. More precisely,
⟨X̂(σ)(ti)⟩c, ⟨P̂ (σ)(ti)⟩c describe individual quantum tra-
jectories of measured quadratures, conditioned on mea-
surement records via a dependence on the heterodyne

measurement noise ξI/Q(ti) through Lmeas. The hetero-
dyne measurement noise itself is modelled as zero-mean
Gaussian white noise,

E[ξI,Q(ti)] = 0, E[ξI,Q(ti)ξI,Q(tj)] =
1

∆t
δijδI,Q (4)

where E[·] describes ensemble averages over distinct noise
realizations (obtained for distinct measurements). In
contrast, the quantum trajectories contain the quantum
noise contributions to the measurement records, in addi-
tion to state information: these include amplified quan-
tum fluctuations when measuring the output field from
a quantum amplifier, or the influence of quantum jumps
in the measured cavity field due to transitions of the dis-
persively coupled qubit.

Finally, ξclI/Q(ti) describe classical noise contributions
to measurement records, for example noise added by clas-
sical HEMT amplifiers. While the statistics of this noise
may take different forms, they are formally distinct from
heterodyne measurement noise as they are not associated
with a stochastic measurement superoperator in Eq. (1).

The objective of the readout task is then to use this
noisy temporal measurement data to obtain an estimated
class label σest that is ideally equal to the true class la-
bel σ. Furthermore, we require single-shot readout [33],
where the estimation must be performed using only a sin-
gle measurement shot: such rapid readout is essential for
quantum feedback and control applications [34–36].

B. Binary qubit state measurement and matched
filters

The standard classification paradigm in cQED to ob-
tain σest from raw heterodyne records would formally
be described as a filtered Gaussian discriminant analy-
sis (FGDA) in contemporary learning theory. This com-
prises two stages: (i) temporal filtering of each measured
quadrature, and (ii) assigning a class label to filtered
quadratures that maximises the likelihood of their obser-
vation amongst all C classes as determined by a Gaussian
probability density function. Formally, this procedure
can be written as:

σest = G

[∑
i

(
hI(ti)I

(σ)(ti)
hQ(ti)Q

(σ)(ti)

)]
= G

[(
h⃗T
I I⃗

(σ)

h⃗T
QQ⃗

(σ)

)]
(5)

where in the second expression we have introduced vec-
torized notation in the space of measurement records, so
that I⃗i = I(ti), enabling the filtering step to be written
as an inner product. The function G[·] then assigns class
labels according to the aforementioned Gaussian discrim-
inator.

A fact seldom mentioned explicitly is that both the
temporal filters and the Gaussian discriminator must be
constructed using a calibration dataset: a set of Ntrain

heterodyne records obtained when the initial qubit states
are known under controlled initialization protocols. For
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example, for the most commonly considered case of bi-
nary qubit state classification to distinguish states |e⟩ and
|g⟩, and under the assumption that the noise in hetero-
dyne records is additive Gaussian white noise, an optimal
filter is known: the matched filter [19, 37, 38]. The em-
pirical matched filter is constructed from the calibration
dataset, where (n) indexes distinct records, via

h⃗I =
1

Ntrain

Ntrain∑
n=1

(
I⃗
(e)
(n) − I⃗

(g)
(n)

)
(6)

with h⃗Q defined analogously with I → Q. The func-
tion G[·] requires fitting Gaussian profiles to measured
probability distributions of known classes, and hence uses
means and variances estimated from calibration data.

While a Gaussian discriminant analysis can be applied
to classification of an arbitrary number of states C and
beyond white noise constraints, the choice of an opti-
mal temporal filter in these more general situations is
not straightforward [39]. Due to their ease of construc-
tion, often a matched filter akin to Eq. (6), or an even
more rudimentary boxcar filter (a uniform filter that is
nonzero only when the measurement signal is on) are
deployed, regardless of the complexity of the noise con-
ditions (for example, when qubit decay is significant and
more optimal filters can be found [19]). We will show
how the TPP approach provides a natural generalization
of matched filtering to multi-state classification, and fur-
nishes a trainable classifier that can generalize to more
complex noise environments.

III. TRAINABLE TEMPORAL
POST-PROCESSOR FOR MULTI-STATE

CLASSIFICATION

Machine learning using only linear trainable weights
has shown remarkable success in time-dependent super-
vised machine learning tasks [21]. In such cases, the ob-
jective is to map a time series faithfully to a dynamically-
evolving target function via the application of an effi-
ciently trainable linear transformation [22]. Here, we
adapt this framework to processing of temporal mea-
surement data from a quantum system and with a time-
independent target, as is relevant for initial state classi-
fication [19].

To overview its key features we first introduce the
mathematical framework underpinning the TPP, which
is defined as follows. We consider NO continuously mea-
sured observables, each measurement yielding a time se-
ries of length NT. All measured data corresponding to
an unknown state with index σ can be compiled into the
vector x⃗(σ) which thus exists in the space x⃗(σ) ∈ RNO·NT .
As an example, in the case of heterodyne measurement,
NO = 2 and x⃗(σ) =

(
I⃗(σ)

Q⃗(σ)

)
(see Fig. 1).

Formally, operation of the TPP is then described as
an input-output transformation, mapping a vector x⃗(σ)

Table I. Summary of components of the TPP learning frame-
work and their dimensions.

Component and dimensions
TPP output y RC

Weights W RC×(NO·NT)

Data x⃗ RNO·NT

Bias b RC

Data means, state p s⃗(p) RNO·NT

Noise process, state p ζ⃗(p) RNO·NT

“Gram” matrix G R(NO·NT)×(NO·NT)

Correlation matrix V R(NO·NT)×(NO·NT)

from the space of measured data, RNO·NT , to a vector
y ∈ RC in the space of class labels; the scalar predicted
class label σest is given by an operation F[·] on this vector
y, so that the complete transformation is:

σest = F[y] = F
[
Wx⃗(σ) + b

]
(7)

The function F[·] is often taken to be the argmax{·} func-
tion that extracts the position of the largest element in
y. However, it can also be a suitably-trained Gaussian
discriminator G[·] as in Eq. (5). The dimensions of the
various components making up the TPP framework are
summarized in Table I.

We note that at first sight Eq. (7), which defines the
TPP scheme for classification, appears to be analogous
to Eq. (5) in the FGDA scheme. There are, in fact, close
connections between the two, as we will expand upon
shortly. However, the TPP framework is also markedly
different, in what can broadly be categorized as two as-
pects.

First, the defining feature of any machine learning ap-
proach: the ability (and requirement) to learn from data.
W ∈ RC×NO·NT is a trainable matrix of weights and
b ∈ RC is a vector of trainable biases, both learned from
data x⃗(p) with known labels p (C in total) in a supervised
learning framework. More precisely, the target y ∈ RC

for any instance of x⃗(p) is taken to be a vector with only
one nonzero element - a single 1 at index p, defining a cor-
ner of a C-dimensional hypercube (referred to as one-hot
encoding, see Fig. 1). Then, the optimal Wopt,bopt min-
imize a least-squares cost function to achieve this target
with minimal error:

{Wopt,bopt} = argmin
W,b

||Y − (WX+ b) ||2 (8)

Here X is the matrix containing the complete train-
ing dataset, comprising Ntrain instances of x⃗(p) for each
class p, while Y is the corresponding set of targets (see
Appendix C for full training details). The FGDA scheme
using matched filters is in principle tailored to situations
where useful signal in data is obscured only by additive
Gaussian white noise, although it is applied much more
broadly in practice. The TPP places no such restrictions
on the training data a priori, and can therefore generalize
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to more nontrivial noise conditions, as we will show. Fur-
thermore, a distinguishing feature of the TPP framework
amongst other ML paradigms is that its optimization is
convex and hence guaranteed to converge.

The second defining feature is the scope of applicabil-
ity of the TPP framework. It natively generalizes to the
classification of an arbitrary number of states C. Fur-
thermore, no restriction is placed on the type of data
that constitutes the vector x⃗. In particular, no underly-
ing physical model of the system generating the measure-
ment data is a priori required: any relevant information
must be learned by the TPP from data during the train-
ing phase. This also implies that the results in this paper
apply to the classification of time series that have noth-
ing to do with qubit state measurement. Its generality
and ease of training enable the TPP to serve as a versa-
tile trainable classifier, suited to a variety of classification
tasks.

A. TPP learning mechanism and interpretation as
optimal filtering

While Eq. (7) presents a formal mathematical formula-
tion of the TPP framework in the machine learning con-
text, we can develop further understanding of how the
TPP learns from data to enable classification. To this
end, we first note that this stochastic measurement data
can be written in the very general form:

x⃗(σ) = s⃗(σ) + ζ⃗(σ) (9)

Here ζ⃗(σ) describes the stochasticity of the measured
data: for heterodyne measurement, for example, this in-
cludes the noise sources from Eq. (3a), (3b), including
quantum noise. We take the noise process to have zero
mean, E[ζ⃗(σ)

j ] = 0. Then, s⃗(σ) = E[x⃗(σ)] are simply the
mean traces of the measured data for state σ. Crucially,
the noise is characterized by nontrivial second-order tem-
poral correlations, which we define as Σ(σ)

jk = E[ζ⃗(σ)
j ζ⃗

(σ)
k ].

Higher-order correlations of the noise will also be gener-
ally non-zero, but are not relevant for the discussion here.

The use of a least-squares cost function in Eq. (8)
means that a closed form of the optimal weights Wopt

and biases bopt learned by the TPP can be obtained (see
Appendix D). Furthermore, the form of Eq. (9) allows us
to write these learned weights and biases as(

Wopt bopt
)
= MD−1. (10)

Here M is a matrix that depends only on the mean traces
(full form in Appendix D). In contrast, D is the matrix
of second-order moments:

D =

(
G+V

∑
c s⃗

(c)∑
c(s⃗

(c))T C

)
(11)

which depends on the the “Gram” matrix of mean traces,
G =

∑
c s⃗

(c)(s⃗(c))T , but also on the temporal correla-
tions via the matrix V =

∑
c Σ

(c). Both these quan-
tities emerge naturally in the analysis of the resolvable

expressive capacity of noisy physical systems [40]. Here,
Eq. (10) implies that weights learned by the TPP are not
determined only by data means via G, but are also sensi-
tive to temporal correlations through V. We will explore
this dependence in the rest of our analysis.

Secondly, we find that the operation of TPP weights on
data can be recast to clarify its connections to standard
filtering-based classification schemes. To do so, we note
that the learned matrix of weights Wopt ∈ RC×NO·NT

can be equivalently expressed as:

Wopt =

f⃗ T
1
...

f⃗ T
C

 (12)

where f⃗k ∈ RNO·NT for k ∈ [C]. With this parameteriza-
tion, Eq. (7) for the kth component of the vector y can
be rewritten as:

yk = f⃗ T
k x⃗+ bk, k ∈ [C] (13)

When compared against Eq. (5), the interpretation of f⃗k

becomes clear: this set of weights can be viewed as a
temporal filter applied to the data x⃗. As a result, TPP
based classification can equivalently be interpreted as the
application of C filters (one for each k) to obtain the es-
timated label σest. The optimal Wopt therefore defines
the optimal filters that enable this estimation with min-
imal error. The use of C optimal filters for a C-state
classification task indicates the linear scaling of the TPP
approach with the complexity of the task. Furthermore,
we note that the C filters are not all independent; they
can be shown to satisfy the constraint (see Appendix D)

C∑
k=1

f⃗k = 0⃗, (14)

where 0⃗ ∈ RNO·NT is the null vector. This powerful con-
straint, which holds regardless of the statistics of the
noise ζ⃗, implies that only C − 1 of the C filters need
to be learned from training data.

B. TPP-learned optimal filters for multi-state
classification under Gaussian white noise

We begin by analyzing the case most often considered
in cQED measurement chains, where the dominant noise
source in heterodyne records I,Q is Gaussian white noise,
which is assumed to be state and time-independent. En-
gineering of cQED measurement chains is geared towards
approaching this limit, by (i) developing large band-
width, high dynamic range amplifiers that operate with
fast response times and minimal nonlinear effects even
at high gain and large input signal powers [41, 42],[43–
46], (ii) improving qubit T1 and tolerance to strong cavity
drives to reduce transitions during Tmeas [3], and (iii) con-
trolling technical noise sources such as electronic white
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Figure 2. TPP-learned optimal filters for simulated multi-state classification under Gaussian white noise condi-
tions. Top right: single-shot measurement records obtained under the indicated measurement tone, and empirical mean traces
of several heterodyne records of the cavity I quadrature corresponding to multi-level atom states |p⟩ where p ∈ {e, g, f, h}. For
a transmon χp/κ ∈ {−χ, χ,−3χ,−5χ}, χ/κ = 0.195, and κ/2π = 1.54 MHz. Rows: TPP-learned optimal filters for classifying
states p ∈ {e, g} (C = 2), {e, g, f} (C = 3), and {e, g, f, h} (C = 4). Black curves are filters learned under the white noise
assumption, calculated analytically using Eq. (15). Bar plots show the coefficients Ckp applied to respective mean traces in
calculating these filters. Gray curves are general filters calculated by numerically solving Eq. (8). Both analytically-computed
white noise filters and general filters can be extended to arbitrary C.

noise from classical cryo-HEMT amplifiers and room tem-
perature electronics.

In this relevant limit, we show that the C filters defined
in Eq. (13) can be computed via:

f⃗k =
∑

p∈{e,g,...}

Ckps⃗
(p), k ∈ [C] (15)

where s⃗(p) are the empirically-calculated mean traces un-
der the known initial state p:

s⃗(p) =
1

Ntrain

Ntrain∑
n=1

x⃗
(p)
(n) (16)

while the coefficients Ckp can also be shown to depend
only on s⃗(p) and additionally the variance of the mea-
sured heterodyne records, assumed to be observable-
independent and time-invariant, as mentioned earlier.
Formally, here the correlation matrix V becomes pro-
portional to the identity matrix (see Appendix D for full

details). The TPP-learned optimal filters in the Gaussian
white noise approximation are therefore simply a semi-
analytically calculable linear combination of the mean
traces. As a result, obtaining these optimal filters only
requires the calculation of an empirical mean of the mea-
surement records for each state, and an empirical esti-
mate of the variances.

We now present an example of TPP-learned optimal
filters for dispersive qubit readout where the dominant
noise source is additive Gaussian white noise. This is en-
sured via a theoretical simulation of Eq. (1) to generate
a dataset of measured heterodyne records for C qubit
states, under the following assumptions: (i) all qubit
state transitions are neglected, (ii) any additional clas-
sical noise sources in the measurement chain are ignored,
and (iii) therefore direct readout of the cavity can be con-
sidered instead of the use of a quantum amplifier and the
potential quantum noise added by it. We take the cavity
measurement tone to be applied for a subset of the total
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Tmeas, namely for [Ton, Toff ] (see Fig. 2, top right), and
to be coincident with the cavity center frequency so that
∆da = 0, usual for transmon readout (for full details, see
Appendix B 1). Other system parameters can be found in
the caption of Fig. 2. We note that the specific details of
the readout scheme do not change the TPP learning pro-
cedure. These simulations yield single-shot measurement
records for any number of transmon states. Examples of
these records are then shown in Fig. 2 for four distinct
transmon states p ∈ {e, g, f, h}; for ease of visualization
we only consider the I quadrature.

We use this simulated dataset as a training set to de-
termine the TPP-learned filters under the white noise
assumption, as defined by Eq. (15). While the individ-
ual measurement records are obscured by white noise,
the empirically-calculated mean traces in the top right
of Fig. 2 illustrate the physics at play. The mean traces
grow once the measurement tone is turned on past Ton,
and settle to a steady state depending on the induced
dispersive shift χp and the measurement amplitude. The
traces begin to fall beyond Toff and eventually settle to
background levels. These means, together with an esti-
mate of the variances, determine the coefficients Ckp that
define the contribution of the mean trace s⃗(p) to the kth
filter, and are hence sufficient to calculate optimal filters
for the classification of any subset of states.

For the standard binary classification task (C = 2) of
distinguishing {e, g} states, the learned filters are shown
in black in the top row of Fig. 2, together with bar plots
showing the coefficients Ckp. Again for visualization, we
only show filters f⃗k ∈ RNT for I quadrature data; the
complete vector f⃗k includes filters for all NO observables.
For the binary case, the k = 1 TPP-learned filter always
satisfies C1e = −C1g. Hence it is simply proportional
to the difference of mean traces for the two states, f⃗1 ∝
s⃗(e) − s⃗(g), making it exactly equivalent to the standard
matched filter for binary classification (see Appendix D).
We note that the second filter (k = 2) is simply the
negative of the first, as demanded by Eq. (14).

Crucially, the TPP approach now provides the gener-
alization of such matched filters to the classification of
an arbitrary number of states. For three-state (C = 3)
classification of {e, g, f} states, the three TPP-learned
filters are plotted in the middle row, while the last row
shows the four filters for the classification of C = 4 states
{e, g, f, h}. Filters for the classification of an arbitrary
number of states C can be constructed similarly. The bar
plots of Ckp show how these filters typically have non-zero
contributions from the mean traces for all states. This
emphasizes that the TPP-learned filters are not simply
a collection of binary matched filters, but a more non-
trivial construction. Most importantly, our analytic ap-
proach enables this construction by inverting a matrix in
R(C−1)×(C−1) to determine Ckp. This is a substantially
lower complexity relative to the pseudoinverse calcula-
tion demanded by Eq. (8), which requires inverting a
much larger matrix in RNO·NT×NO·NT (see Appendix D).

Of course, the latter approach of obtaining Wopt and
hence TPP filters using Eq. (8) can also be employed for
learning using the same training data. Here, it yields the
underlying filters in gray. The resulting filters appear to
simply be noisier versions of the analytically calculated
filters. The reason for this straightforward: the fact that
the noise in the measurement data is additive Gaussian
white noise is a key piece of information used in calculat-
ing the TPP filters via Eq. (15), but is not a priori known
to the general RC. The latter makes no assumptions re-
garding the underlying noise statistics of the dataset. In-
stead, the training procedure itself enables the TPP to
learn the statistics of the noise and adjust Wopt accord-
ingly. The fact that the general TPP filters approach the
white noise filters shows this learning in practice. This
ability to extract noise statistics from data is a key fea-
ture that makes TPP learning useful under more general
noise conditions, as we will demonstrate in Secs. IV, V.

C. TPP performance under Gaussian white noise
in comparison to standard FGDA

We now analyze the classification performance using
TPP-learned optimal filters from the previous section in
comparison to the standard FGDA approach. For con-
creteness, we perform dispersive qubit readout to distin-
guish C = 3 states p ∈ {e, g, f}. Recall that we consider
the measurement tone to be resonant with the cavity, as
is often the case for transmon readout. Then, the sign of
cavity dispersive shifts for transmon states e and f is the
same, and is opposite to that for g, making them harder
to distinguish (see also Fig. 3 inset).

For this three-state classification task, a unique filter
choice for the FGDA is not known. While certain ap-
proaches at constructing filters have been attempted [47],
boxcar filtering is still commonly employed. Another ap-
proach might be to use a matched filter that optimizes
distinction of just one pair of states. There are 3 such
filters in total: for discrimination of e-g states as defined
in Eq. (6), as well as analogously-defined filters for e-f
and g-f states.

In Fig. 3, we show classification infidelities 1−F , cal-
culated for datasets with increasing measurement tone
amplitude (more opaque markers), using both the opti-
mal TPP filter and the FGDA with the four aforemen-
tioned filter choices. We clearly observe that the FGDA
infidelities for most choices are worse than the RC. Inter-
estingly, the poorest performer is not the boxcar filter;
instead, it is the e-g filter, which would be optimal if
we were only distinguishing {e, g} states, that yields the
worst performance. This is because the e-g filter is com-
pletely unaware of the f state: it attempts to best dis-
criminate e and g, but in doing so substantially confuses
e and f states that are already the hardest to distinguish.
The e-f filter corrects this major problem and hence per-
forms better, but does not discriminate e and g as well
as the e-g filter would. Due to the specific driving condi-
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Figure 3. Multi-state (C = 3) classification perfor-
mance of TPP versus FGDA under Gaussian white
noise conditions. We consider dispersive qubit readout to
distinguish states p ∈ {e, g, f} as a function of measurement
power; more opaque markers indicate stronger measurement
tone amplitudes. Inset shows induced dispersive shifts for
each state (not to scale). Standard FGDA is performed using
one of three MFs corresponding to each distinct state pair,
as well as a boxcar filter. TPP filters are also followed by
a Gaussian discriminator for an equivalent comparison. Only
one of the binary MFs allows the FGDA to approach the TPP,
while all other chosen filters yield a worse performance.

tions and phases, the g-f filter unwittingly does a good
job at addressing both these problems, yielding the best
performance. Nevertheless, it can only match the RC.

This trial-and-error approach relies on knowledge of
optimal matched filtering from binary classification, but
clearly cannot be optimal for C > 2: none of the fil-
ter choices are informed by the statistical properties of
measured data for all C classes to be distinguished. Fur-
thermore, the number of distinct state pairs, and hence
pairwise matched filters, grows quadratically with C in
the absence of symmetries, making this brute force ap-
proach even less feasible for larger classification tasks. In
contrast, the TPP approach provides a simple scheme
to learn optimal filters that is automated, takes data for
readout of all classes into account, and still scales linearly
with the task dimension set by C.

However, the true strength of TPP learning arises
when noise in measured heterodyne records no longer
satisfies the additive Gaussian white noise assumption,
which may arise if any of the conditions (i)-(iii) for qubit
measurement chains listed in Sec. III B are not met. De-
partures from this ideal scenario are widely prevalent in
cQED. Through the rest of this paper, we show how the
trainability of the TPP approach enables it to learn fil-
ters tailored to these more general noise conditions, and
consequently outperform the standard FGDA based on
binary matched filters.

IV. TPP-LEARNING FOR REAL QUBITS

A. Experimental Results

To demonstrate how the general learning capabilities
of the TPP approach can aid qubit state classification
in a practical setting, we now apply it to the readout
of finite-lifetime qubits in an experimental cQED mea-
surement chain. The essential components of the mea-
surement chain are as depicted schematically in Fig. 1
and described by Eq. (1). The actual circuit diagram is
shown in Fig. 9 in Appendix A, and important param-
eters characterizing the measurement chain components
are summarized in Fig. 4(a).

We consider two distinct cavity systems, for the disper-
sive readout of distinct single qubits A and B to discrim-
inate states p ∈ {e, g}. For lossless qubits that are read
out dispersively for a fixed measurement time Tmeas, the
ratio χ/κ determines the theoretical maximum readout
fidelity; in particular, an optimal value for this ratio is
known under these ideal conditions [32]. However, exper-
imental considerations mean that operating parameters
must be designed with several other factors in mind. At
high χ/κ ratios with modest or higher κ, for large κ with
modest χ/κ ratios, and especially when both are true, the
experiment is sensitive to dephasing from the thermal oc-
cupation of the readout resonator at a rate proportional
to n̄κ [48]. This can be quite limiting to the T2 dephas-
ing time of the qubit if the readout resonator is strongly
coupled to the environment and/or the environment has
appreciable average thermal photon occupation n̄. In the
opposite low χ/κ limit, the qubit is shielded from thermal
dephasing, but readout becomes very difficult as the rate
at which one learns about the qubit state from a steady
state coherent drive is proportional to χ/κ [32]. In this
experiment, the lower-than-usual χ/κ ≈ 0.2 in qubit B
represents a compromise between these two limits, while
also enabling the high fidelity discrimination of multiple
excited states of the transmon (See Fig. A8).

Each readout cavity is driven in reflection, and its out-
put signal is amplified also in reflection using a Josephson
Parametric Amplifier (JPA). We employ the latest itera-
tion of strongly-pumped and weakly-nonlinear JPAs [46],
boasting a superior dynamic range. Such JPAs operate
well below saturation even at signal powers that corre-
spond to over 100 photons, enabling us to probe qubit
readout at high measurement powers. By choosing a sig-
nal frequency at exactly half the pump frequency, we can
operate the JPA in phase-sensitive mode. We can also
operate the amplifier in phase-preserving mode if we de-
tune the signal from half the pump frequency by greater
than the spectral width of the pulse. Several filters are
used to reject the strong JPA pump tone required to en-
able this operation. Circulators are used to route the
output signals away from the input signals and to isolate
the qubit from amplified noise.

In principle, the use of these stronger measurement
tones should enhance the classification fidelity for qubit
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Figure 4. Classification performance of TPP versus FGDA for readout of real qubits. (a) Parameters of various
dispersive qubit-cavity systems used for gathering readout data. Coherence measurements are subject to 10% variation over
time. (b) Representative qubit readout histograms under boxcar filtering as a function of measurement signal amplitude. (c)
Readout data for three dispersive qubit-cavity systems is analyzed and the resulting classification infidelities for binary (C = 2)
state classification are plotted against each other. The dashed line marks 1 − FFGDA = 1 − FTPP. For datasets with variable
shading of markers (red and black), more opaque markers indicate stronger measurement tone amplitudes. Inset: Percentage
fewer errors E computed for indicated datasets with increasing input signal amplitude.

readout. In practice, however, higher measurement pow-
ers are known to be associated with a variety of complex
dynamical effects. Perhaps the most common observa-
tion is enhanced qubit e → g decay under strong driving
(referred to as the T1 versus n̄ problem). The relative
accessibility of higher excited states in transmon qubits
means that at strong enough driving, general multi-level
transitions to these higher levels can also be observed.
There have also been predictions of chaotic dynamics and
ionization [14, 49] at certain readout resonator occupa-
tion levels. The theoretical understanding of these ef-
fects, and their modeling via an SME analogous to Eq. (1)
is an ongoing challenge.

In our experiments, we perform readout across this
domain using measurement pulse durations (Toff − Ton)
ranging from 500 ns to 900 ns, and measurement ampli-
tudes from 0.04 to 0.09 in arbitrary voltage units, corre-
sponding to roughly 44 to 100 photons in the cavity in the
steady state. At the lowest pulse duration and amplitude,
this corresponds to just enough discriminating power to
separate the measured distributions for the two states by
approximately their width in a boxcar-filtered IQ plane
(namely, without the use of an empirical MF). An exam-
ple of the individual readout histograms for qubits ini-
tialized in states p ∈ {e, g} at this lowest measurement
tone power is shown in Fig. 4(a).

At the highest measurement powers, we are able to
populate the readout cavity with up to 100 photons, cal-
ibrated by observing the frequency shift of the qubit drive
frequency versus the occupation of the readout resonator.
At these powers, extreme higher-state transitions become
visible during the readout pulse [9]; an example is shown
in Fig. 4(a) (see also Fig. 8 in Appendix A). There is also

a notable elliptical distortion in the high-amplitude data,
particularly for qubit A. We suspect that this is due to
the short duration of the pulses and the inclusion of the
cavity ring-up and ring-down in the integration, since the
simple boxcar filter used to integrate the histograms in
Fig. 4 does not rotate with the signal mean.

For such complex regimes where no simple model of
the dynamics exists, the construction of an optimal filter
is not known; this hence serves as an ideal testing ground
for the TPP approach to qubit state classification. We
compute the infidelities of binary classification using both
the TPP scheme and an FGDA using the standard MF
[Eq. (6)] under a variety of readout conditions, plotting
the results against each other in Fig. 4.

The highest fidelity using both schemes is obtained for
qubit B under conditions where its T1 time is longest.
This dataset was collected at a fixed, moderate measure-
ment power; the different points correspond to a rolling
of the relative JPA pump and measurement tone phase
that determines the amplified quadrature under phase-
sensitive operation. The dashed line marks equal classifi-
cation infidelities, so that any datasets above this line
yield a higher classification infidelity with the FGDA
than with the RC. Here we see that both schemes ex-
hibit very similar performance levels.

The other two datasets are obtained for readout un-
der varying measurement powers. The depth of shad-
ing of the markers indicates the strength of measure-
ment drives: the more opaque the marker, the stronger
the measurement power. For weaker measurement pow-
ers, we see that the TPP and the FGDA are once again
comparable. However, a very clear trend emerges: for
stronger measurement powers - where measurement dy-
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Figure 5. Adaptation of TPP-learned filters with in-
creasing measurement tone amplitude and evolving
noise conditions. Black curves are normalized TPP filters
under the white noise assumption; for binary state classifi-
cation, these are identical to standard matched filters. Gray
curves are general TPP filters with no assumptions on noise
statistics. (a) Filter f⃗1 for binary (C = 2) classification, and
(b) filters f⃗1,3 for C = 3 state classification. In both cases, at
weaker amplitudes the general TPP filter closely matches the
TPP filter assuming white noise. However, for stronger mea-
surement amplitudes, a marked difference between the white
noise TPP filter and the general TPP filter is observed.

namics become much more complex as demonstrated in
Fig. 4(a) - the TPP generally outperforms the FGDA.

To more precisely quantify the difference in perfor-
mance between the TPP and FGDA, we introduce the
metric E :

E =

(
FTPP −FFGDA

1−FFGDA

)
×100 (17)

which essentially asks: “what percentage fewer errors
does the TPP make when compared to the FGDA?” We
plot E in the inset of Fig. 4 for the two qubit readout ex-
periments where the input signal amplitude is varied. We
see clearly that with increasing amplitude, the TPP can
significantly outperform the FGDA scheme, committing
as many as 30% fewer errors in the experiments consid-
ered.

Our results demonstrate that the TPP approach can be
successfully applied to real qubit readout across a broad
spectrum of measurement conditions. Furthermore, the
TPP can even outperform the standard FGDA in certain
relevant regimes, such as for high-power readout. While
the TPP can thus be applied as a model-free learning
tool, we are also interested in understanding the prin-
ciples that enable the TPP to outperform standard ap-
proaches using an MF. Uncovering these principles can
help identify the types of classification tasks where TPP
learning is essential. Our interpretation of TPP learning
as optimal filtering proves a useful tool in this vein.

B. Adaptation of TPP-learned filters under strong
measurement tones

The observed difference in performance between the
TPP and the standard FGDA lies in the former’s abil-
ity to learn from data as experimental conditions evolve.
Our interpretation of TPP learning as the determination
of optimal filters proves particularly insightful in express-
ing this adaptability.

Recall that for a C state classification task, the TPP
learns C filters; however, the sum of filters is constrained
by Eq. (14), so that C − 1 filters are sufficient to de-
scribe the TPP’s learning capabilities. In Fig. 5(a) we
first consider filters learned by the TPP for a C = 2
classification task, for select experimental datasets from
Fig. 4 obtained under a low and a high measurement
power. It therefore suffices to analyze just f⃗1, the first
filter for the I quadrature, as a function of measurement
power. The black curves are filters learned under the
assumption of Gaussian white noise, given by Eq. (15);
recall that for this binary case, these filters are exactly
the standard MF. The gray curves, in contrast, are fil-
ters learned by the TPP for arbitrary noise conditions,
obtained by solving Eq. (8). At a low measurement tone
amplitude (less opaque marker), the general TPP filter
appears very similar to the TPP filter under white noise.
As the measurement tone amplitude is increased, how-
ever, the TPP-learned filter under arbitrary noise can
deviate substantially from the TPP filter under white
noise. This is accompanied by a marked difference in
performance, as observed earlier.

Crucially, the generalization of matched filters pro-
vided by TPP-learning via Eq. (15) enables a similar
comparison for classification tasks of an arbitrary num-
ber of states. We show learned filters for C = 3 state
classification of p ∈ {e, g, f} in Fig. 5(b), again for a low
and high measurement power. It is now sufficient to con-
sider any two of three distinct I-quadrature filters; here
we choose f⃗1 and f⃗3. Once more, the general TPP filters
begin to deviate significantly from TPP filters under the
white noise assumption at high powers.

Clearly, the precise form of filters learned by the TPP
to outperform white noise filters must be influenced by
some physical phenomena that arise at strong measure-
ment powers. However, the TPP is not provided with
any physical description for such phenomena, which is
in fact part of its model-free appeal. What then, is the
mechanism through which the TPP can learn about such
phenomena to compute optimal filters? The answer lies
in Eq. (10): TPP-learned filters are sensitive to noise
correlations in data via V. Using simulations of mea-
surement chains where the noise structure of quantum
measurement data can be precisely controlled, we show
that the noise structure can strongly deviate from white
noise conditions under practical settings.
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V. TPP LEARNING: SIMULATION RESULTS

A. Learning correlations

As discussed in Sec. IIIA, the learned weights and
hence optimal filters depend on mean traces, but are also
cognizant of - and can learn from - the noise structure
of measured data via the temporal correlation matrix V.
This is in stark contrast to the use of a matched filter.

Crucially, when learning from data obtained from
quantum systems, the observed correlations can have a
quantum-mechanical origin. In what follows, we demon-
strate the ability of the TPP to learn these quantum cor-
relations, using simulations of two experimental setups
where such quantum noise sources arise naturally: (i)
readout using phase-preserving quantum amplifiers with
a finite bandwidth, so that the amplifier added noise (de-
manded by quantum mechanics) has a nonzero correla-
tion time, and (ii) readout of finite lifetime qubits with
multi-level transitions (quantum jumps).

B. Correlated quantum noise added by
finite-bandwidth phase-preserving quantum

amplifiers

Quantum-limited amplifiers are a mainstay of measure-
ment chains in cQED, needed to overcome the added clas-
sical noise of following HEMTs. Phase-preserving quan-
tum amplifiers are necessitated by quantum mechanics
to add a minimum amount of noise to the incoming cav-
ity signal being processed. The correlation time of this
added quantum noise is determined by the dynamics of
the amplifier itself, namely its active linewidth reduced
by anti-damping necessary for gain. For finite bandwidth
amplifiers operating at large enough gains, this can lead
to the addition of quantum noise with non-zero correla-
tion time in measured heterodyne data.

To simulate qubit readout in these circumstances, we
consider a quantum measurement chain described by
Eq. (1) now consisting of a qubit-cavity-amplifier setup.
Lmeas then describes the readout of a non-degenerate (i.e.
two-mode) parametric amplifier and its non-reciprocal
coupling to the cavity used to monitor the qubit. We ig-
nore qubit state transitions, so that Lenvt only describes
losses via unmonitored ports of the cavity and amplifier.
Full details of the simulated SME are included in Ap-
pendix B 2.

We must consider added classical noise in the measure-
ment chain, as this is what demands the use of a quantum
amplifier in the first place. We take the added classical
noise to be purely white, ξcl(ti) =

√
n̄cl

dW
dt (ti), with a

noise power n̄cl = 30, parameterized as usual in “photon
number” units; these assumptions on the noise structure
and power are taken from standard cQED experiments,
including our own. Now, the obtained heterodyne mea-
surement records, Eqs. (3a), (3b) contain two dominant
noise sources: (i) excess classical white noise, and (ii)
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Figure 6. Classification performance of TPP versus
FGDA on simulated dataset of readout via a phase-
preserving quantum amplifier. (a) Classification infideli-
ties for varying amplifier transmission gains Gtr as a function
of measurement signal amplitude (more opaque markers are
higher amplitudes). The ratio of the bare amplifier linewidth
to the cavity mode linewidth is γ/κ = 5. Noise PSD is shown
in the inset for the different operating gains (for a linear am-
plifier, this is independent of the measurement signal am-
plitude). (b) Learned filters under white noise assumption
(black) and general noise conditions (gray) for representative
datasets of each value of Gtr. (c) Classification infidelities as
a function of total time t. The measurement tone is only on
between the two vertical dashed lines.

quantum noise added by the amplifier, contained once
again in quantum trajectories ⟨X̂(σ)(t)⟩c and ⟨P̂ (σ)(t)⟩c.

We restrict ourselves for the moment to binary classi-
fication of states |e⟩ and |g⟩; here, the matched filtering
(MF) scheme is unambiguously defined, and serves as
a concrete benchmark for comparison to the TPP ap-
proach. In Fig. 6, we compare calculated infidelities us-
ing the FGDA and TPP approaches for three different
values of amplifier transmission gain Gtr, and as a func-
tion of the coherent input tone power: darker markers
correspond to readout with stronger input tones.

To understand how correlations in the measured data
depend on the varying amplifier gain, we introduce the
noise power spectral density (PSD) of the data (here, the
I-quadrature) for state |p⟩,

S(p)[f ] ≈
NT∑
j>k

e−i2πfτjkΣ
(p)
jk (18)
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where τjk = ∆t(j − k). The PSD is simply the Fourier
transform of the noise autocorrelation function (by the
Wiener-Khinchin theorem). Through V, the TPP learns
from these correlations when optimizing filters. The noise
PSD is plotted in the inset of Fig. 6; for the current read-
out task, this is independent of p. With increasing gain,
the PSD deviates from the flat spectrum representative
of white noise to a spectrum peaked at low frequencies,
indicative of an extended correlation time. The observa-
tions also emphasize that added noise by the quantum
amplifier dominates over heterodyne measurement noise
ξ, as well as excess classical noise ξcl.

For the lowest considered amplifier gain, we see that
the FGDA and TPP classification performance is quite
close. However, with increasing gain, the FGDA infi-
delity is substantially higher, up to an order of magni-
tude worse for the largest gain considered here. This
TPP performance advantage is enabled by optimized fil-
ters, shown in Fig. 6(b). The measurement tone is only
on between the two dashed vertical lines. The curves in
black show white noise filters, exactly equal to the MF
in this binary case. Note that these filters also change
with gain: the amplifier response time increases at higher
gains, so the mean traces and hence the MF derived from
these traces exhibit much slower rise and fall times. The
general TPP filter is similar to the MF at low gains, but
becomes markedly distinct at higher gains.

Interestingly, one such change is that at high gains the
general TPP filter becomes non-zero even prior to the
measurement signal turning on (the first vertical dashed
line). This appears odd at first sight, since there must
not be any information that could enable state classifica-
tion before a measurement tone probes the cavity used
for dispersive qubit measurement. To validate this, in
Fig. 6(d) we plot 1−F calculated for an increasing length
of measured data, t ∈ [0, Tmeas]. We clearly see that for
t < Ton, both the TPP and FGDA cannot distinguish the
states, as must be the case. The non-zero segment of the
general TPP filter before Ton instead accounts for noise
correlations. In particular, due to the long correlation
time of noise added by the quantum amplifier, noise in
data beyond Ton is correlated with noise from t < Ton.
The general TPP filter is aware of these correlations that
the standard MF is completely oblivious to, and by ac-
counting for them improves classification performance.

C. Correlated quantum noise due to multi-level
transitions

A transmon is a multi-level artificial atom, as described
by Eq. (2); as a result, it is possible to excite levels be-
yond the typical two-level computational subspace of e
and g states. Such transitions manifest as stochastic
quantum jumps in quantum measurement data, and are
an important source of error in readout.

To model measurement under such conditions, we now
consider the dispersive heterodyne readout of a finite
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Figure 7. Classification performance of TPP versus
FGDA on simulated dataset of readout of a qubit ex-
periencing multi-level transitions. (a) E as a function
of increasing transition rate values (more opaque markers),
as shown. Schematic in the inset shows transmon levels and
non-zero transition rates considered. (b) Noise PSD S(p)[f ]
for three representative datasets in the inset, indicating de-
viation from flat (white noise) as measurement data includes
more transitions. (c) TPP learned filters (gray) compared to
matched filters (black) for representative datasets, showing
adaptation with transition rates.

lifetime transmon with possible occupied levels {e, g, f}.
We further allow only a subset of all possible allowed
transitions between these levels, and with static rates:
|e⟩ → |g⟩ at rate γeg, the reverse |g⟩ → |e⟩ at rate γge,
and |e⟩ → |f⟩ at rate γef (see Fig. 7 inset). The transi-
tions are described by superoperator Lenvt, while Lmeas

describes the measurement tone incident on the cavity,
and the heterodyne measurement superoperator for the
same; for full details see Appendix B 3.

For simplicity, we now further neglect excess classical
noise added by the measurement chain, dropping terms
ξclI/Q(t). As a result, the obtained measurement records,
Eqs. (3a), (3b), contain only two noise sources: white het-
erodyne measurement noise, and quantum noise due to
qubit state transitions imprinted on the emanated cavity
field, contained in quantum trajectories of cavity quadra-
tures ⟨X̂(σ)(t)⟩c and ⟨P̂ (σ)(t)⟩c. We then generate sim-
ulated datasets by integrating the resulting full SME,
Eq. (1) for different values of transition rates, and con-
sider the task of binary classification of states p ∈ {e, g}.

We compare the performance of a trained TPP against
that of an FGDA with an empirical MF using the metric
E in Fig. 7(a) with varying transition rates. The noise
PSD is plotted in Fig. 7(b) for representative datasets. In
the absence of any transitions (lightest orange), S(p)[f ]
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is flat at all frequencies, regardless of the initially pre-
pared state p. This is because the measured data only
has heterodyne white noise. With an increase in γeg, we
note that S(e)[f ] deviates from the white noise spectrum,
attaining a peak at low frequencies. In contrast, S(g)[f ]
remains unchanged as trajectories for initial states |g⟩
undergo no transitions. In the most complex case where
we allow for all considered transitions, S(g)[f ] also starts
to demonstrate deviation from the white noise spectrum.

From readout datasets with no transitions to readout
data with increasing transition rates, we note a small but
clear improvement in classification performance using the
trained TPP in comparison to the FGDA. That the TPP
is able to learn information in the presence of transitions
that evades the MF is clear when we compare the two sets
of filters in Fig. 7(c). As the transition rates increase, the
MF undergoes modifications due to the changes to the
means of heterodyne records. However, the TPP is sen-
sitive to changed beyond means - in the correlations of
measured data - and increasingly learns a distinct filter
with sharply decaying features. We note that the util-
ity of similar exponential linear filters for finite-lifetime
qubits has been the subject of earlier analytic work [19].
The TPP approach generalizes the ability to learn such
filters in the presence of arbitrary transition rates and
measurement tones, and for multi-state classification.

We emphasize that the simplified transition model con-
sidered here is chosen to highlight the ability of the TPP
to learn quantum noise associated with quantum jumps
under controlled noise conditions, where no other non-
trivial noise sources (classical or quantum) exist. The
TPP approach to learning is model-free, and its ability
to learn in more general noise settings is demonstrated
by its adaptation to real qubit readout in Sec. IV.

VI. DISCUSSION AND OUTLOOK

In this paper we have demonstrated a reservoir com-
puting approach to classification of an arbitrary number
of states using temporal data obtained from quantum
measurement chains. While we have focused on the task
of dispersive readout of multi-level transmons, the TPP
approach applies broadly to quantum systems, and more
generally physical systems, monitored over time. Our re-
sults show that the TPP framework for processing quan-
tum measurement data reduces to standard approaches
based on matched filtering in the precise regimes of va-
lidity of the latter. However, the TPP can adapt to
more general readout scenarios to significantly outper-
form matched filtering schemes. We show this improve-
ment for RCs trained on real qubit readout data to con-
firm the practical utility of our scheme.

Rather than treating the TPP as a black box, in our
work we clarify the learning mechanism that enables the
TPP to outperform matched filtering schemes. First, we

develop a heuristic interpretation of the TPP mapping as
one of applying temporal filters to measured data. TPP
learning then amounts to learning optimal filters. De-
constructing the learning scheme, we find the TPP per-
formance advantage is enabled by its ability to learn op-
timal filters by accounting for noise correlations in tem-
poral data. When this noise is purely white, the TPP
approach provides a generalization of matched filtering
to an arbitrary number of states.

Crucially, we find that the TPP can efficiently learn
from correlations not just due to classical signals, or in
principle due to quantum noise in theory, but from prac-
tical systems where the majority of the noise is quan-
tum in origin. In addition to real qubit readout, using
theoretical simulations where the strength of quantum
noise sources can be tuned precisely, such as noise due
to multi-level transitions or the added noise of phase-
preserving quantum amplifiers, we clearly demonstrate
that the TPP can learn from quantum noise correlations
to outperform standard matched filtering.

The TPP approach, anchored by its connection to
standard matched filtering under simplified readout con-
ditions, with demonstrated advantages for real qubit
readout under more complex readout conditions, and fea-
sible for FPGA implementations (to be demonstrated in
future work), is ideal for integration with cQED mea-
surement chains for the next step in readout optimiza-
tion. Furthermore, the TPP’s generality and ability to
learn from data could pave the way for an even broader
class of applications. An important potential use is as a
post-processor of quantum measurement data for quan-
tum machine learning. With the use of general quantum
machines for information processing, the optimal means
to extract data from their measurements may not always
be known. The TPP is ideally suited to uncover the opti-
mal post-processing step, through training that could be
incorporated parallel to, or as part of, the optimization of
the quantum machine. Finally, optimal state estimation
is essential for control applications. The trainable TPP
can form part of a framework for control applications,
such as Kalman filtering for quantum systems.

ACKNOWLEDGMENTS

We would like to thank Leon Bello, Dan Gauthier, and
Shyam Shankar for useful discussions. This work was
supported by the AFOSR under Grant No. FA9550-20-
1-0177 and by the Army Research Office under Grant No.
W911NF18-1-0144. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the AFOSR, Army Research Of-
fice, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright nota-
tion herein.



14

[1] A. Roy and M. Devoret, Introduction to parametric am-
plification of quantum signals with josephson circuits,
Comptes Rendus Physique 17, 740 (2016).

[2] J. Aumentado, Superconducting parametric amplifiers:
The state of the art in josephson parametric amplifiers,
IEEE Microwave Magazine 21, 45 (2020).

[3] A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M.
Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar,
J. Bryon, A. Vrajitoarea, S. Sussman, G. Cheng, T. Mad-
havan, H. K. Babla, X. H. Le, Y. Gang, B. Jäck, A. Gye-
nis, N. Yao, R. J. Cava, N. P. de Leon, and A. A.
Houck, New material platform for superconducting trans-
mon qubits with coherence times exceeding 0.3 millisec-
onds, Nature Communications 12, 1779 (2021), number:
1 Publisher: Nature Publishing Group.

[4] G. Angelatos, S. A. Khan, and H. E. Türeci, Reservoir
Computing Approach to Quantum State Measurement,
Physical Review X 11, 041062 (2021).

[5] S. A. Khan, F. Hu, G. Angelatos, and H. E.
Türeci, Physical reservoir computing using finitely-
sampled quantum systems, arXiv:2110.13849 [quant-ph]
10.48550/arXiv.2110.13849 (2021).

[6] J. Nokkala, R. Martínez-Peña, G. L. Giorgi, V. Pa-
rigi, M. C. Soriano, and R. Zambrini, Gaussian states
of continuous-variable quantum systems provide univer-
sal and versatile reservoir computing, Communications
Physics 4, 1 (2021).

[7] R. Martínez-Peña, G. L. Giorgi, J. Nokkala, M. C. So-
riano, and R. Zambrini, Dynamical Phase Transitions in
Quantum Reservoir Computing, Physical Review Letters
127, 100502 (2021).

[8] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni,
G. L. Giorgi, M. C. Soriano, and R. Zambrini, Oppor-
tunities in Quantum Reservoir Computing and Extreme
Learning Machines, Advanced Quantum Technologies 4,
2100027 (2021).

[9] D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends,
B. Campbell, Y. Chen, B. Chiaro, A. Dunsworth,
A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mu-
tus, M. Neeley, C. Neill, P. J. O’Malley, C. Quintana,
P. Roushan, A. Vainsencher, T. White, J. Wenner, A. N.
Korotkov, and J. M. Martinis, Measurement-induced
state transitions in a superconducting qubit: Beyond the
rotating wave approximation, Physical Review Letters
117, 190503 (2016).

[10] M. Malekakhlagh, A. Petrescu, and H. E. Türeci, Life-
time renormalization of weakly anharmonic supercon-
ducting qubits. I. Role of number nonconserving terms,
Physical Review B 101, 134509 (2020), publisher: Amer-
ican Physical Society.

[11] A. Petrescu, M. Malekakhlagh, and H. E. Türeci, Life-
time renormalization of driven weakly anharmonic su-
perconducting qubits. II. The readout problem, Physical
Review B 101, 134510 (2020).

[12] R. Hanai, A. McDonald, and A. Clerk, Intrinsic mech-
anisms for drive-dependent Purcell decay in supercon-
ducting quantum circuits, Physical Review Research 3,
043228 (2021).

[13] M. Khezri, A. Opremcak, Z. Chen, A. Bengtsson,
T. White, O. Naaman, R. Acharya, K. Anderson,
M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. C. Bardin,

A. Bourassa, J. Bovaird, L. Brill, B. B. Buckley, D. A.
Buell, T. Burger, B. Burkett, N. Bushnell, J. Campero,
B. Chiaro, R. Collins, A. L. Crook, B. Curtin, S. Demura,
A. Dunsworth, C. Erickson, R. Fatemi, V. S. Ferreira,
L. F. Burgos, E. Forati, B. Foxen, G. Garcia, W. Gi-
ang, M. Giustina, R. Gosula, A. G. Dau, M. C. Hamil-
ton, S. D. Harrington, P. Heu, J. Hilton, M. R. Hoff-
mann, S. Hong, T. Huang, A. Huff, J. Iveland, E. Jef-
frey, J. Kelly, S. Kim, P. V. Klimov, F. Kostritsa, J. M.
Kreikebaum, D. Landhuis, P. Laptev, L. Laws, K. Lee,
B. J. Lester, A. T. Lill, W. Liu, A. Locharla, E. Lucero,
S. Martin, M. McEwen, A. Megrant, X. Mi, K. C. Miao,
S. Montazeri, A. Morvan, M. Neeley, C. Neill, A. Ner-
sisyan, J. H. Ng, A. Nguyen, M. Nguyen, R. Potter,
C. Quintana, C. Rocque, P. Roushan, K. Sankarago-
mathi, K. J. Satzinger, C. Schuster, M. J. Shearn,
A. Shorter, V. Shvarts, J. Skruzny, W. C. Smith, G. Ster-
ling, M. Szalay, D. Thor, A. Torres, B. W. K. Woo,
Z. J. Yao, P. Yeh, J. Yoo, G. Young, N. Zhu, N. Zo-
brist, D. Sank, A. Korotkov, Y. Chen, and V. Smelyan-
skiy, Measurement-induced state transitions in a super-
conducting qubit: Within the rotating wave approxima-
tion, arXiv:2212.05097 [quant-ph] (2022).

[14] R. Shillito, A. Petrescu, J. Cohen, J. Beall, M. Hauru,
M. Ganahl, A. G. Lewis, G. Vidal, and A. Blais, Dynam-
ics of transmon ionization, Physical Review Applied 18,
034031 (2022).

[15] D. Gusenkova, M. Spiecker, R. Gebauer, M. Willsch,
D. Willsch, F. Valenti, N. Karcher, L. Grünhaupt, I. Tak-
makov, P. Winkel, D. Rieger, A. V. Ustinov, N. Roch,
W. Wernsdorfer, K. Michielsen, O. Sander, and I. M. Pop,
Quantum Nondemolition Dispersive Readout of a Super-
conducting Artificial Atom Using Large Photon Num-
bers, Physical Review Applied 15, 064030 (2021).

[16] T. Walter, P. Kurpiers, S. Gasparinetti, P. Mag-
nard, A. Potočnik, Y. Salathé, M. Pechal, M. Mon-
dal, M. Oppliger, C. Eichler, and A. Wallraff, Rapid
High-Fidelity Single-Shot Dispersive Readout of Super-
conducting Qubits, Physical Review Applied 7, 054020
(2017), publisher: American Physical Society.

[17] M. Tsang, Volterra filters for quantum estimation and
detection, Physical Review A 92, 062119 (2015).

[18] B. Lienhard, A. Vepsäläinen, L. C. Govia, C. R. Hof-
fer, J. Y. Qiu, D. Ristè, M. Ware, D. Kim, R. Winik,
A. Melville, B. Niedzielski, J. Yoder, G. J. Ribeill, T. A.
Ohki, H. K. Krovi, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, Deep-Neural-Network Discrimination of
Multiplexed Superconducting-Qubit States, Physical Re-
view Applied 17, 014024 (2022), publisher: American
Physical Society.

[19] J. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin,
and R. J. Schoelkopf, Protocols for optimal readout of
qubits using a continuous quantum nondemolition mea-
surement, Physical Review A 76, 012325 (2007), pub-
lisher: American Physical Society.

[20] Source code available at https://zenodo.org/doi/10.
5281/zenodo.10020462.

[21] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane,
N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and
A. Hirose, Recent advances in physical reservoir comput-
ing: A review, Neural Networks 115, 100 (2019).

https://doi.org/10.1016/J.CRHY.2016.07.012
https://doi.org/10.1109/MMM.2020.2993476
https://doi.org/10.1038/s41467-021-22030-5
https://doi.org/10.1103/PhysRevX.11.041062
https://doi.org/10.48550/arXiv.2110.13849
https://doi.org/10.1038/s42005-021-00556-w
https://doi.org/10.1038/s42005-021-00556-w
https://doi.org/10.1103/PhysRevLett.127.100502
https://doi.org/10.1103/PhysRevLett.127.100502
https://doi.org/10.1002/qute.202100027
https://doi.org/10.1002/qute.202100027
https://doi.org/10.1103/PHYSREVLETT.117.190503/FIGURES/4/MEDIUM
https://doi.org/10.1103/PHYSREVLETT.117.190503/FIGURES/4/MEDIUM
https://doi.org/10.1103/PhysRevB.101.134509
https://doi.org/10.1103/PhysRevB.101.134510
https://doi.org/10.1103/PhysRevB.101.134510
https://doi.org/10.1103/PhysRevResearch.3.043228
https://doi.org/10.1103/PhysRevResearch.3.043228
https://arxiv.org/abs/2212.05097v1
https://doi.org/10.1103/PHYSREVAPPLIED.18.034031/FIGURES/8/MEDIUM
https://doi.org/10.1103/PHYSREVAPPLIED.18.034031/FIGURES/8/MEDIUM
https://doi.org/10.1103/PhysRevApplied.15.064030
https://doi.org/10.1103/PhysRevApplied.7.054020
https://doi.org/10.1103/PhysRevApplied.7.054020
https://doi.org/10.1103/PhysRevA.92.062119
https://doi.org/10.1103/PhysRevApplied.17.014024
https://doi.org/10.1103/PhysRevApplied.17.014024
https://doi.org/10.1103/PhysRevA.76.012325
https://zenodo.org/doi/10.5281/zenodo.10020462
https://zenodo.org/doi/10.5281/zenodo.10020462
https://doi.org/10.1016/j.neunet.2019.03.005


15

[22] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Bar-
bosa, Next generation reservoir computing, Nature Com-
munications 12, 5564 (2021), number: 1 Publisher: Na-
ture Publishing Group.

[23] D. Canaday, A. Griffith, and D. J. Gauthier, Rapid time
series prediction with a hardware-based reservoir com-
puter, Chaos: An Interdisciplinary Journal of Nonlinear
Science 28, 123119 (2018), publisher: American Institute
of Physics.

[24] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, Us-
ing machine learning to replicate chaotic attractors and
calculate Lyapunov exponents from data, Chaos: An In-
terdisciplinary Journal of Nonlinear Science 27, 121102
(2017).

[25] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-
Free Prediction of Large Spatiotemporally Chaotic Sys-
tems from Data: A Reservoir Computing Approach,
Physical Review Letters 120, 024102 (2018).

[26] A. Griffith, A. Pomerance, and D. J. Gauthier, Forecast-
ing chaotic systems with very low connectivity reservoir
computers, Chaos: An Interdisciplinary Journal of Non-
linear Science 29, 123108 (2019).

[27] D. Canaday, A. Pomerance, and D. J. Gauthier, Model-
free control of dynamical systems with deep reservoir
computing, Journal of Physics: Complexity 2, 035025
(2021), publisher: IOP Publishing.

[28] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gam-
betta, Procedure for systematically tuning up cross-
talk in the cross-resonance gate, Physical Review A 93,
060302 (2016).

[29] J. Kelly, P. O. Malley, M. Neeley, H. Neven, and J. M. M.
Google, Physical qubit calibration on a directed acyclic
graph, arXiv:1803.03226 [quant-ph] (2018).

[30] X. Dai, D. M. Tennant, R. Trappen, A. J. Martinez,
D. Melanson, M. A. Yurtalan, Y. Tang, S. Novikov, J. A.
Grover, S. M. Disseler, J. I. Basham, R. Das, D. K. Kim,
A. J. Melville, B. M. Niedzielski, S. J. Weber, J. L. Yoder,
D. A. Lidar, and A. Lupascu, Calibration of flux crosstalk
in large-scale flux-tunable superconducting quantum cir-
cuits, PRX Quantum 2, 040313 (2021).

[31] G. Zhu, D. G. Ferguson, V. E. Manucharyan, and
J. Koch, Circuit QED with fluxonium qubits: Theory
of the dispersive regime, Physical Review B 87, 024510
(2013).

[32] A. Blais, A. L. Grimsmo, S. Girvin, and A. Wallraff,
Circuit quantum electrodynamics, Reviews of Modern
Physics 93, 025005 (2021).

[33] F. Mallet, F. R. Ong, A. Palacios-Laloy, F. Nguyen,
P. Bertet, D. Vion, and D. Esteve, Single-shot qubit read-
out in circuit quantum electrodynamics, Nature Physics
5, 791 (2009), number: 11 Publisher: Nature Publishing
Group.

[34] D. Ristè, J. G. van Leeuwen, H.-S. Ku, K. W. Lehn-
ert, and L. DiCarlo, Initialization by Measurement of a
Superconducting Quantum Bit Circuit, Physical Review
Letters 109, 050507 (2012).

[35] J. E. Johnson, C. Macklin, D. H. Slichter, R. Vijay, E. B.
Weingarten, J. Clarke, and I. Siddiqi, Heralded State
Preparation in a Superconducting Qubit, Physical Re-
view Letters 109, 050506 (2012).

[36] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson,
P. Morfin, M. Mirrahimi, M. H. Devoret, F. Mallet,
and B. Huard, Persistent Control of a Superconducting
Qubit by Stroboscopic Measurement Feedback, Physical

Review X 3, 021008 (2013).
[37] G. Turin, An introduction to matched filters, IRE Trans-

actions on Information Theory 6, 311 (1960), conference
Name: IRE Transactions on Information Theory.

[38] M. Silveri, E. Zalys-Geller, M. Hatridge, Z. Leghtas,
M. H. Devoret, and S. M. Girvin, Theory of remote en-
tanglement via quantum-limited phase-preserving ampli-
fication, Physical Review A 93, 062310 (2016).

[39] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal,
J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J. C. Besse,
S. Gasparinetti, A. Blais, and A. Wallraff, Determinis-
tic quantum state transfer and remote entanglement us-
ing microwave photons, Nature 2018 558:7709 558, 264
(2018).

[40] F. Hu, G. Angelatos, S. A. Khan, M. Vives, E. Türeci,
L. Bello, G. E. Rowlands, G. J. Ribeill, and H. E.
Türeci, Tackling Sampling Noise in Physical Sys-
tems for Machine Learning Applications: Fundamen-
tal Limits and Eigentasks, arXiv:2307.16083 [quant-ph]
10.48550/arXiv.2307.16083 (2023).

[41] B. A. Kochetov and A. Fedorov, Higher-order nonlinear
effects in a Josephson parametric amplifier, Physical Re-
view B 92, 224304 (2015).

[42] S. Boutin, D. M. Toyli, A. V. Venkatramani, A. W. Ed-
dins, I. Siddiqi, and A. Blais, Effect of Higher-Order
Nonlinearities on Amplification and Squeezing in Joseph-
son Parametric Amplifiers, Physical Review Applied 8,
054030 (2017), publisher: American Physical Society.

[43] D. J. Parker, M. Savytskyi, W. Vine, A. Laucht, T. Duty,
A. Morello, A. L. Grimsmo, and J. J. Pla, Degenerate
parametric amplification via three-wave mixing using ki-
netic inductance, Physical Review Applied 17, 034064
(2022).

[44] A. Remm, S. Krinner, N. Lacroix, C. Hellings,
F. Swiadek, G. J. Norris, C. Eichler, and A. Wall-
raff, Intermodulation distortion in a josephson traveling-
wave parametric amplifier, Physical Review Applied 20,
034027 (2023).

[45] R. Kaufman, T. White, M. I. Dykman, A. Iorio, G. Stir-
ling, S. Hong, A. Opremcak, A. Bengtsson, L. Faoro,
J. C. Bardin, T. Burger, R. Gasca, and O. Naaman,
Josephson parametric amplifier with chebyshev gain pro-
file and high saturation, arXiv:2305.17816 [quant-ph]
https://doi.org/10.48550/arXiv.2305.17816 (2023).

[46] R. Kaufman, C. Liu, K. Cicak, B. Mesits, M. Xia,
C. Zhou, M. Nowicki, D. Pekker, J. Aumentado, and
M. Hatridge, In Preparation (2024).

[47] L. Chen, H. X. Li, Y. Lu, C. W. Warren, C. J.
Križan, S. Kosen, M. Rommel, S. Ahmed, A. Osman,
J. Biznárová, A. F. Roudsari, B. Lienhard, M. Caputo,
K. Grigoras, L. Grönberg, J. Govenius, A. F. Kockum,
P. Delsing, J. Bylander, and G. Tancredi, Transmon
qubit readout fidelity at the threshold for quantum er-
ror correction without a quantum-limited amplifier, npj
Quantum Information 2023 9:1 9, 1 (2023).

[48] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R. S.
Huang, J. Majer, S. M. Girvin, and R. J. Schoelkopf,
Ac stark shift and dephasing of a superconducting qubit
strongly coupled to a cavity field, Physical Review Let-
ters 94, 123602 (2005).

[49] J. Cohen, A. Petrescu, R. Shillito, and A. Blais, Reminis-
cence of classical chaos in driven transmons, PRX Quan-
tum 4, 020312 (2023).

[50] A. Metelmann and A. A. Clerk, Nonreciprocal Pho-

https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1063/1.5048199
https://doi.org/10.1063/1.5048199
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1063/1.5120710
https://doi.org/10.1063/1.5120710
https://doi.org/10.1088/2632-072X/ac24f3
https://doi.org/10.1088/2632-072X/ac24f3
https://doi.org/10.1103/PHYSREVA.93.060302/FIGURES/6/MEDIUM
https://doi.org/10.1103/PHYSREVA.93.060302/FIGURES/6/MEDIUM
https://arxiv.org/abs/1803.03226v1
https://doi.org/10.1103/PRXQuantum.2.040313
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1038/nphys1400
https://doi.org/10.1038/nphys1400
https://doi.org/10.1103/PhysRevLett.109.050507
https://doi.org/10.1103/PhysRevLett.109.050507
https://doi.org/10.1103/PhysRevLett.109.050506
https://doi.org/10.1103/PhysRevLett.109.050506
https://doi.org/10.1103/PhysRevX.3.021008
https://doi.org/10.1103/PhysRevX.3.021008
https://doi.org/10.1109/TIT.1960.1057571
https://doi.org/10.1109/TIT.1960.1057571
https://doi.org/10.1103/PHYSREVA.93.062310/FIGURES/5/MEDIUM
https://doi.org/10.1038/s41586-018-0195-y
https://doi.org/10.1038/s41586-018-0195-y
https://doi.org/10.48550/arXiv.2307.16083
https://doi.org/10.1103/PhysRevB.92.224304
https://doi.org/10.1103/PhysRevB.92.224304
https://doi.org/10.1103/PhysRevApplied.8.054030
https://doi.org/10.1103/PhysRevApplied.8.054030
https://doi.org/10.1103/PHYSREVAPPLIED.17.034064/FIGURES/23/MEDIUM
https://doi.org/10.1103/PHYSREVAPPLIED.17.034064/FIGURES/23/MEDIUM
https://doi.org/10.1103/PHYSREVAPPLIED.20.034027/FIGURES/12/MEDIUM
https://doi.org/10.1103/PHYSREVAPPLIED.20.034027/FIGURES/12/MEDIUM
https://doi.org/https://doi.org/10.48550/arXiv.2305.17816
https://doi.org/10.1038/s41534-023-00689-6
https://doi.org/10.1038/s41534-023-00689-6
https://doi.org/10.1103/PHYSREVLETT.94.123602/FIGURES/5/MEDIUM
https://doi.org/10.1103/PHYSREVLETT.94.123602/FIGURES/5/MEDIUM
https://doi.org/10.1103/PRXQUANTUM.4.020312/FIGURES/20/MEDIUM
https://doi.org/10.1103/PRXQUANTUM.4.020312/FIGURES/20/MEDIUM


16

ton Transmission and Amplification via Reservoir Engi-
neering, arXiv:1502.07274 [cond-mat, physics:quant-ph]
(2015), arXiv: 1502.07274.

[51] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S.

Udaltsov, Y. K. Chembo, and M. Jacquot, High-Speed
Photonic Reservoir Computing Using a Time-Delay-
Based Architecture: Million Words per Second Classi-
fication, Physical Review X 7, 011015 (2017), publisher:
American Physical Society.

http://arxiv.org/abs/1502.07274
http://arxiv.org/abs/1502.07274
https://doi.org/10.1103/PhysRevX.7.011015


17

APPENDICES

Appendices 17

A Experimental Setup 18

B Simulating heterodyne measurement records obtained from quantum measurement chains for
dispersive qubit readout 19
1 Dispersive readout with no qubit transitions and using a cavity . . . . . . . . . . . . . . . . . . . . . . 19
2 Dispersive readout with no qubit transitions and using a quantum-limited amplifier with added noise . 21
3 Dispersive readout including multi-level transitions using a cavity . . . . . . . . . . . . . . . . . . . . . 21

C Training and testing details 23

D TPP learned weights as optimal filters: analytic results 25
1 Measured data as stochastic random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Constraints on TPP filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Analytically-calculable TPP filters under the stationary quadrature-independent Gaussian white noise

approximation: “matched filters” for arbitrary C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Reduction to standard matched filter for binary classification (C = 2) . . . . . . . . . . . . . . . . . . 31

E Time-shuffled data 32

F TPP learning of correlated classical noise 33



18

Appendix A: Experimental Setup

In this appendix section, we show a few more examples of readout IQ histograms as well as a more detailed circuit
diagram for the measurement chain. Shown in Fig. 8 below, we see two examples of the extremes of the measurement
data used to generate Fig.4. Part (a) shows a lower power readout pulse performed for a short 300ns time, where the
cavity barely has time to reach a steady state before the drive is turned off. Consequently, information from both the
ring up and ring down must be integrated to achieve the SNR shown in this figure. Despite this measure, there is still
significant infidelity from the lack of separation of the gaussian signals. In the second case, the displacement voltage
is larger, and the pulse is three times as long, resulting in significantly increased separation of the gaussian signals
and enabling discrimination of the |g⟩ , |e⟩ , |f⟩ and |h⟩ states. However, the large powers required induce transitions
between these states, resulting in the trails between them as the measurement integrates a mixture of different cavity
states at different times.
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Figure 8. Comparison between boxcar-integrated IQ results of (a) a lower power pulse applied for a short time and (b) a
higher power pulse applied for a longer time. State transitions are visible as "trails" leading between the primary symbols in
(b). Counts are shown in logarithmic units to emphasize low-count trails.

In Fig. A9, the hardware schematic of the measurements in section IV are shown. The measurement setup is fairly
standard, using single sideband upconversion to send signals into the dilution refrigerator, moving through three
stages of attenuation with 20dB attenuation at 4K, 20dB attenuation at the 100mK stage, and approximately 45dB of
attenuation at the base stage of the refrigerator, with 10dB of the base stage attenuation coming from a particularly
well-thermalized copper body attenuator. The signal interacts with the qubit and cavity system, is routed by two
circulation stages to the amplifier, amplified in reflection, and then is routed once again back through the circulators
to the remaining stages of amplification at 4K and room temperature accordingly. From there it is downconverted
by the same local oscillator to 50MHz, filtered, amplified once more at low frequency, digitized at 1GS/s, and finally
demodulated and integrated to acquire a readout histogram such as the ones shown in Fig. 8.
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2𝜔 Pump

rf-SQUID JPA

Figure 9. Upconversion and downconversion schematic for drive pulses sent first to the qubit readout resonator, driven in
reflection, then routed to the amplifier and to the HEMT via two circulators.

Appendix B: Simulating heterodyne measurement records obtained from quantum measurement chains for
dispersive qubit readout

In this appendix section, we describe the SMEs used to model various quantum measurement chains and generated
datasets analyzed in the main text. For convenience we reproduce the general SME of Eq. (1):

dρ̂c = Lsysρ̂c dt+ Lenvtρ̂c + Lmeas[dW ]ρ̂c (B1)

For all the considered models of quantum measurement chains for the fixed task of dispersive qubit readout, Lsys

remains the same, as identified in the main text:

Lsysρ̂c = −i[Ĥdisp, ρ̂c] (B2)

where Ĥdisp is the dispersive cQED Hamiltonian for a multi-level artificial atom,

Ĥdisp ≃
∑
p

ωp|p⟩⟨p| −∆daâ
†â+

∑
p

χpâ
†â|p⟩⟨p| (B3)

The superoperators Lenvt and Lmeas[dW ] will depend on the specific model considered.

1. Dispersive readout with no qubit transitions and using a cavity

For qubit readout in the absence of any state transitions, Lenvt → 0. As a result, the SME of Eq. (B1) takes the
simpler form:

dρ̂c = Lsysρ̂c dt+ Lmeas[dW ]ρ̂c (B4)

Here Lsys is given by Eq. (B2). The superoperator Lmeas describes quantum modes in the measurement chain that
are used to measure the quantum system of interest. This superoperator can be expressed in the general form:

Lmeas[dW ]ρ̂c = Lqρ̂c + S[dW ]ρ̂c (B5)
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Here Lq defines the unconditional dynamics of quantum modes used for measurement; here, it takes the explicit form:

Lqρ̂ = −i[η(â+ â†), ρ̂] + κD[â]ρ̂ (B6)

which describes the measurement tone used for cavity readout, and the cavity losses due to its monitored port.
Importantly, Lq is independent of the qubit sector.

Then, S[dW ] is the stochastic measurement superoperator that describes conditional evolution under continuous
heterodyne monitoring:

S[dW ]ρ̂c =

√
κ

2

(
âρ̂c + ρ̂câ

† − ⟨â+ â†⟩ρ̂c
)
dWI +

√
κ

2

(
−iâρ̂c + iρ̂câ

† − ⟨−iâ+ iâ†⟩ρ̂c
)
dWQ (B7)

These explicit forms of superoperators fully define Eq. (B1) in this regime without qubit transitions. However, this
assumption can be used to further simplify the form of the SME. In particular, in the absence of transitions, the
quantum state of the measurement chain is given by the ansatz:

ρ̂(t) = |p⟩⟨p| ⊗ ϱ̂c(t) (B8)

where ϱ̂c(t) is the conditional density matrix defining the quantum state of all quantum modes in the measurement
chain other than the qubit (namely, the cavity mode). The above implies that the qubit state is completely unchanged
during the readout time. The only evolution is in the state of the modes used to readout the qubit, namely the cavity
modes.

By now tracing out the qubit subspace in Eq. (B1), we can obtain an SME for ϱ̂c(t) alone, under the ansatz of
Eq. (B8). The Hamiltonian contribution from the dispersive qubit Hamiltonian yields:

trQ{Ĥdisp|p⟩⟨p| ⊗ ϱ̂c} = trQ

{∑
j

ωj |j⟩⟨j|p⟩⟨p| ⊗ ϱ̂c

}
− trQ

{
|p⟩⟨p| ⊗ (∆daâ

†âϱ̂c)
}
+ trQ

{∑
j

χj â
†â |j⟩⟨j|p⟩︸︷︷︸

δjp

⟨p| ⊗ ϱ̂c

}
= ωpϱ̂c −∆daâ

†âϱ̂c + χpâ
†âϱ̂c (B9)

and by conjugation,

trQ{|p⟩⟨p| ⊗ ϱ̂cĤdisp} = ϱ̂cωp − ϱ̂c∆daâ
†â+ ϱ̂cχpâ

†â (B10)

following which we arrive at:

trQ{−i[Ĥdisp, ρ̂c]} = −i
(
[−∆daâ

†â, ϱ̂c] + [χpâ
†â, ϱ̂c]

)
= −i[(−∆da + χp) â

†â, ϱ̂c] ≡ −i[Ĥcav, ϱ̂c] (B11)

where we have defined Ĥcav as the cavity Hamiltonian alone:

Ĥcav = (−∆da + χp) â
†â = (ωa + χp − ωd)â

†â (B12)

We can perform a similar simplification on terms due to Lmeas. For the ansatz in Eq. (B8), we find for Lq:

trQ{Lq(|p⟩⟨p| ⊗ ϱ̂c)} = trQ{|p⟩⟨p| ⊗ Lqϱ̂c} = trQ{|p⟩⟨p|} ⊗ Lqϱ̂c = Lqϱ̂c (B13)

As Lq was independent of the qubit subsector, it remains unchanged following the partial trace over this subsector.
The stochastic measurement operator S[dW ] is again independent of the qubit subspace. Hence tracing out the qubit
sector yields:

√
κ trQ{S[dW ]|p⟩⟨p| ⊗ ϱ̂c} =

√
κ trQ{|p⟩⟨p|} ⊗ S[dW ]ϱ̂c =

√
κS[dW ]ϱ̂c (B14)

The final cavity-only SME in the absence of any qubit transitions takes the form:

dϱ̂c = −i[Ĥcav, ϱ̂c]dt+ Lmeas[dW ]ϱ̂c (B15)

The resulting SME is purely linear and can be solved exactly using a truncated equations of motion (TEOMs)
approach.
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2. Dispersive readout with no qubit transitions and using a quantum-limited amplifier with added noise

As in the previous subsection, in the absence of any state transitions, Lenvt → 0, and the SME of Eq. (B1) takes
the simpler form:

dρ̂c = Lsysρ̂c dt+ Lmeas[dW ]ρ̂c (B16)

Again Lsys is given by Eq. (B2), and Lmeas takes the form:

Lmeas[dW ]ρ̂c = Lqρ̂c + S[dW ]ρ̂c (B17)

Now, Lq for the unconditional dynamics of quantum modes used for measurement takes the explicit form:

Lqρ̂ = −i[η(â+ â†), ρ̂] + κ′D[â]ρ̂+ Lcρ̂c + Lampρ̂ (B18)

The first term again describes the measurement tone used for cavity readout, and the second describes cavity losses.
However, the cavity’s open port is now directed to a phase-preserving amplifier downstream. The superoperator
Lamp is the Liouvillian defining this quantum amplifier, which we take to be a two-mode non-degenerate parametric
amplifier providing phase-preserving gain:

Lampρ̂c = −i

[
−igamp

2
d̂ĉ+ h.c., ρ̂c

]
+ γdD[d̂]ρ̂c + γD[ĉ]ρ̂c (B19)

The superoperator Lc then defines the non-reciprocal coupling between the cavity mode and amplifier’s signal mode
d̂,

Lcρ̂c = −i

[
ig

2
d̂â† + h.c., ρ̂c

]
+ ΓD[â+ d̂]ρ̂c (B20)

To ensure non-reciprocal coupling so that fields from the cavity that carry qubit state information are transmitted to
the amplifier for readout, but transmission in the reverse direction is forbidden, we require g = Γ [50].

Finally S[dW ] describes conditional evolution under continuous heterodyne monitoring, now of the amplifier’s signal
mode:

S[dW ]ρ̂c =

√
γd
2

(
d̂ρ̂c + ρ̂cd̂

† − ⟨d̂+ d̂†⟩ρ̂c
)
dWI +

√
γd
2

(
−id̂ρ̂c + iρ̂cd̂

† − ⟨−id̂+ id̂†⟩ρ̂c
)
dWQ (B21)

We now summarize the actual parameter choices used to generate quantum amplifier simulated datasets in the main
text. We define the total cavity loss rate κ = κ′ + Γc. Then, we choose cavity parameters so that κ′ = Γc = 0.5κ,
and the dispersive shift χ/κ = 0.5. Recall that perfect non-reciprocal coupling in the desired direction requires
g = Γ = 0.5κ. Lastly, amplifier parameters are chosen so that γ = γd +Γ = 5κ, yielding the ratio of cold amplifier to
cavity linewidth γ/κ = 5 used in the main text, and also implying that γd = 4.5κ.

In the absence of qubit transitions, Eq. (B8) holds once again, as Lmeas is completely independent of the qubit sector.
Hence this sector may be traced out exactly as in the previous subsection. We thus arrive at a cavity-amplifier-only
SME in the absence of any qubit transitions:

dϱ̂c = −i[Ĥcav, ϱ̂c]dt+ Lmeas[dW ]ϱ̂c (B22)

for Lmeas now given by Eq. (B17). The resulting SME is again linear and can be solved exactly using a truncated
equations of motion (TEOMs) approach.

3. Dispersive readout including multi-level transitions using a cavity

For qubit readout allowing for state transitions, we must now include Lenvt in the SME:

dρ̂c = Lsysρ̂c dt+ Lenvtρ̂c + Lmeas[dW ]ρ̂c (B23)

Again Lsys is given by Eq. (B2). Now the nontrivial superoperator Lenvt takes the form:

Lenvtρ̂ =
∑
j ̸=k

γjkD[|k⟩⟨j|]ρ̂ (B24)
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where γjk is the rate of transition from qubit state |j⟩ to state |k⟩.
As we still consider readout using a cavity, the remaining terms in Eq. (B23) are as in Eq. (B25); in particular,

Lmeas takes the form:

Lmeas[dW ]ρ̂c = Lqρ̂c + S[dW ]ρ̂c (B25)

where Lq is given by:

Lqρ̂ = −i[η(â+ â†), ρ̂] + κD[â]ρ̂ (B26)

while S[dW ] is given by:

S[dW ]ρ̂c =

√
κ

2

(
âρ̂c + ρ̂câ

† − ⟨â+ â†⟩ρ̂c
)
dWI +

√
κ

2

(
−iâρ̂c + iρ̂câ

† − ⟨−iâ+ iâ†⟩ρ̂c
)
dWQ (B27)

We emphasize that now the quantum state of the measurement chain can not generally be expressed in the form
of Eq. (B8). Hence Eq. (B23) is integrated in joint the qubit-cavity Hilbert to generated simulated measurement
datasets.
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Appendix C: Training and testing details

In this appendix, we analyze how optimal weights Wopt are learned from a training dataset in the TPP approach.
We begin with the TPP map defined in the main text, Eq. (7):

σest = F
[
y(n)

]
= F

[
Wx⃗(n) + b

]
(C1)

now written to describe the mapping of a single instance n of measured data, compiled in the vector x⃗(n), to a vector
y(n) ∈ RC . The mapping is via a set of weights W applied linearly to the data x⃗, and a set of weights that are
additive, compiled in a column vector of biases b ∈ RC .

The vector x⃗ lives in the joint space of measurement records: x⃗(n) ∈ RNO·NT is also a column vector, and can be
written in the form:

x⃗(n) =


x⃗1(n)

x⃗2(n)

...
x⃗NO(n)

 (C2)

where each vector x⃗m(n) ∈ RNT is a column vector describing the discretized records of m ∈ [NO] measurement
observables, each with NT samples. Recall that for standard heterodyne readout, NO = 2, where x⃗1 = I⃗, x⃗2 = Q⃗.
From here on, we can work with this concatenated vector x⃗.

In Eq. (C1), F [·] is a function that maps the vector of measured heterodyne records to a discrete, scalar state label
σ ∈ [1, . . . , C]. This mapping is carried out via two operations. First, the measurement records x⃗

(σ)
(n) are mapped

to an intermediate target vector y
(σ)
(n) employing a ‘one-hot’ encoding (conventional for classification tasks): The kth

element of this target vector y
(σ)
(n) is given by:

[y
(σ)
(n)]k =

{
1 if k = σ,

0 otherwise.
(C3)

With the key notation in place, we can discuss how the TPP training dataset is constructed. A training dataset
of size Ntrain consists of n ∈ [Ntrain] heterodyne records for each of the C states required to be distinguished in the
classification task. We define a matrix X ∈ RNO·NT×CNtrain :

X =
(
x⃗
(1)
(1) x⃗

(1)
(2) · · · x⃗

(1)
(Ntrain)

· · · x⃗
(C)
(1) x⃗

(C)
(2) · · · x⃗

(C)
(Ntrain)

)
(C4)

We also define a matrix Y ∈ RC×CNtrain compiling the corresponding targets

Y =
(
y
(1)
(1) y

(1)
(2) · · · y

(1)
(Ntrain)

· · · y
(C)
(1) y

(C)
(2) · · · y

(C)
(Ntrain)

)
(C5)

By further introducing 1⃗ ∈ R1×CNtrain as a row vector containing all ones, Eq. (C1) for all CNtrain records per
measured observable can be written in the compact matrix form:

Y = WX+ b1⃗ =
(
W b

)(X
1⃗

)
≡ WX (C6)

Eq. (C6) helps us define X ∈ R(NO·NT+1)×CNtrain as a matrix which contains all measured records as well as a row
of ones to account for the contribution of biases. Then, W ∈ RC×(NO·NT+1) is the composite matrix of all learned
weights. Eq. (C6) defines a regression problem that can be solved to obtain the optimal weights [51],

Wopt = YX T (XX T )−1 (C7)

For convenience of the analysis to follow we introduce two new matrices: the mean matrix M ∈ RC×(NO·NT+1),

NtrainM ≡ YX T , (C8)

and the second-order moments matrix C ∈ R(NO·NT+1)×(NO·NT+1)

NtrainC ≡ XX T , (C9)
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so that Eq. (C7) can equivalently be written as:

Wopt = MC−1 (C10)

where the factors of Ntrain cancel out.
Note that the matrix C = XX T can at times be ill-conditioned, making its inverse difficult to compute numerically.

In such cases, we instead compute the quantity C+, related to the pseudoinverse of X , and defined by the following
limit relation defining the pseudoinverse:

C+ = lim
λ→0

(C− λI)−1 (C11)

where I is the identity matrix on R(NO·NT+1)×(NO·NT+1) and λ is typically referred to as a regularization parameter.
If C is invertible, we have C+ → C−1. We do emphasize that for the datasets analyzed in this paper, we consider a
weak regularization of λ = 10−15, if any.

For all classification infidelities calculated in the main text, we perform cross-validation. For a full dataset of
Ntraj records per state, a training set is constructed with Ntrain < Ntraj records as described above. The remaining
Ntest = Ntraj−Ntrain records are used to construct a testing set. Predicted state labels are obtained using this testing
set via both the FGDA scheme, Eq. (5) of the main text, and the TPP, Eq. (7). This process is repeated a total of
L = 10 times: each time, a new set of weights Wopt is obtained from a distinct randomly chosen training set of the
total Ntraj records, and classification infidelities computed using the new random testing datasets. All classification
fidelities are averaged to obtain the final values plotted in the main text. This approach is standard in machine
learning, and ensures that the observed performance is not unduly effected by variations due to the specific training
or testing dataset used.
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Appendix D: TPP learned weights as optimal filters: analytic results

In this appendix, we will attempt to find an explicit form for the matrix Wopt from the previous seciton, under
some assumptions on the form of the data contained in X.

1. Measured data as stochastic random variables

To make further progress, we must make some assumptions regarding the general form of measured data x⃗(c). In
particular, we assume:

x⃗(c) = s⃗(c) + ζ⃗(c) (D1)

where ζ⃗(c) is a random noise process that contains the stochasticity of the data x⃗. In particular, this includes
contributions from heterodyne measurement noise ξ⃗, added classical noise ξ⃗cl, as well as quantum noise in conditional
quantum trajectories. Without loss of generality, ζ⃗ can always be taken to have zero mean,

E[ζ⃗j ] = 0 ∀ j (D2)

The random noise process can be defined by its covariance matrix,

Σ
(c)
jk = E[ζ⃗(c)

j ζ⃗
(c)
k ]. (D3)

The noise process will in general also possess non-zero higher-order cumulants, but these quantities will not make an
appearance in our analysis here.

Then, s⃗(c) is simply equal to the expectation value of the random variable x⃗(c) over an in principle infinite number
of shots,

s⃗(c) = E[x⃗(c)] (D4)

In practice, we will only have access to a finite number of shots Ntrain. Then, the above mean can be approximated
using the estimator:

s⃗(c) ≈ 1

Ntrain

Ntrain∑
n=1

x⃗
(c)
(n). (D5)

Similarly, the covariance matrix of the noise process can be estimated via:

Σ(c) ≈ 1

Ntrain

Ntrain∑
n=1

ζ⃗
(c)
(n)ζ⃗

(c)T
(n) . (D6)

Assuming the very general form of Eq. (D1), we can proceed to greatly simplify the matrices M and C.

a. Simplification of mean matrix M

The mean matrix M, Eq. (C8), can be written explicitly as

NtrainM = Y
(
XT 1⃗T

)
=
(
YXT Y1⃗T

)
(D7)

We now proceed to simplify the general matrices Y1⃗T and YXT . Starting with the former, we in which simply yields
a column vector that is an element of RC×1, we find explicitly:

(Y1⃗T )l =

C·Ntrain∑
k=1

Ylk1⃗
T
k =

∑
n

∑
c

y
(c)
l =

∑
n

∑
c

δcl = Ntrain (D8)

Here, we have used the fact that the sum over the columns of Y (and of X), indexed by k, can be decomposed into
two sums: over Ntrain training records indexed by n, and over C states indexed by c. From here on, we suppress the
limits of these summations, for clarity.
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Next we consider YXT , which can be expanded out explicitly,

(YXT )lm =
∑
k

YlkX
T
km =

∑
k

YlkXmk =

Ntrain∑
n=1

C∑
c=1

δlc(x⃗
(c)
(n))m ≃ Ntrain

C∑
c=1

δlc(s⃗
(c))m = Ntrain(s⃗

(l))m (D9)

where we have used Eq. (D5) in obtaining the final expression. Hence using Eq. (D7), the matrix M takes the simple
form (after the factors of Ntrain cancel out):

M =

(s⃗(1))T 1
...

...
(s⃗(C))T 1

 ≡

(S⃗(1))T

...
(S⃗(C))T

 , (D10)

which contains the mean traces for all measured observables over all states, explaining the nomenclature of the mean
matrix. We have further introduced the vectors S⃗(c) which also include the contribution from the bias.

b. Simplification of second-order moments matrix C

Simplifying the second-order correlation matrix C is more involved. We begin by expanding it to the form:

NtrainC ≡ XX T =

(
X

1⃗

)(
XT 1⃗T

)
=

(
XXT X1⃗T

1⃗XT 1⃗⃗1T

)
(D11)

Note that XXT is simply the two-time correlation matrix of the measured data.
We can further simplify C, which has four components. Starting with the simplest, we note that:

1⃗⃗1T =
∑
k

1⃗k1⃗
T
k =

∑
n

∑
c

1 = CNtrain (D12)

Next, we consider the off-diagonal block term,

(X1⃗T )i =
∑
k

(X)ik (⃗1
T )k =

∑
c

∑
n

(x⃗
(c)
(n))i ≃ Ntrain

∑
c

[s⃗m(c)]i (D13)

The other off-diagonal term is simply the transpose of the above.
Finally, we consider the block matrix,

[XXT ]ij =
∑
k

[X]ik[X
T ]kj =

∑
k

[X]ik[X]jk =
∑
c

∑
n

[x⃗
(c)
(n)]i[x⃗

(c)
(n)]j (D14)

To proceed further, we substitute Eq. (D1) into the final expression and expand:

[XXT ]ij =
∑
c

∑
n

[x⃗
(c)
(n)]i[x⃗

(c)
(n)]j =

∑
c

{
[s⃗(c)]i[s⃗

(c)]j +
∑
n

[ζ⃗
(c)
(n)]i[s⃗

(c)]j + [s⃗(c)]i
∑
n

[ζ⃗
l(c)
(n) ]j +

∑
n

[ζ⃗
(c)
(n)]i[ζ⃗

(c)
(n)]j

}
(D15)

Note that the sums indexed by n over the training data are estimators of the statistics of the noise process. We can
therefore write:

[XXT ]ij = Ntrain

∑
c

{
[s⃗(c)]i[s⃗

(c)]j +Σ
(c)
ij

}
(D16)

It now proves useful to introduce two further matrices, the Gram matrix G:

G =
∑
c

s⃗(c)(s⃗(c))T (D17)

and the empirical covariance matrix V:

V =
∑
c

Σ(c) (D18)



27

We can therefore write C in the simplified form,

C =

(
G+V

∑
c s⃗

(c)∑
c(s⃗

(c))T C

)
(D19)

and hence construct the full C via Eq. (D11).
Having constructed explicit forms of M and C, we are in principle positioned to evaluate the optimal weights Wopt

explicitly as well. To do so, it first again proves useful to interpret the learned weights in terms of optimal filters.

2. Constraints on TPP filters

The learned matrix of weights can be written in vector form as:

Wopt ≡

(f⃗1)T b1

...
...

(f⃗C)T bC

 ≡

(F⃗1)
T

...
(F⃗C)

T

 (D20)

Next, using Eq. (C7) together with the explicit form of the mean matrix M in Eq. (D10), we arrive at the important
relation: (F⃗1)

T

...
(F⃗C)

T

 =

(S⃗(1))T

...
(S⃗(C))T

C−1 =⇒ C−1
(
S⃗(1) · · · S⃗(C)

)
=
(
F⃗1 · · · F⃗C

)
(D21)

where we have used the fact that C, and hence its inverse, is a symmetric matrix, and thereby computed the transpose
of both sides. The above equation then implies:

C−1S⃗(c) = F⃗c (D22)

We note that the matrix C is very general as it is constructed for completely arbitrary measured signals; it is
therefore generally dense and its inverse C−1 cannot be analytically determined. However, Eq. (D22) suggests that if
we can find a way to work with quantities C−1S⃗(c) directly, we can avoid having to evaluate this regularized inverse
of C. This is our strategy to evaluate optimal filters analytically.

We demonstrate this approach by considering the action of C on the constant inhomogeneous vector,

n⃗ =

(
0⃗
1

)
(D23)

where 0⃗ ∈ RNO·NT is a vector of zeros. In particular, we wish to evaluate Cn⃗. Using the block representation of C,
we have:

Cn⃗ =

(
G+V

∑
c s⃗

(c)∑
c(s⃗

(c))T C

)(
0⃗
1

)
=

(∑
c s⃗

(c)

C

)
=
∑
c

(
s⃗(c)

1

)
=
∑
c

S⃗(c) (D24)

Most importantly, note that the right hand side is entirely independent of the covariance matrix V, instead depending
only on mean traces.

Now, using Eq. (D22), multiplying through by C−1 will allow us to work directly with the (unknown) optimal filters
F⃗ (c). We immediately find: ∑

c

F⃗c = n⃗ (D25)

For completeness, we also consider the case where we instead require the calculation of C+. To this end, we add
and subtract the regularization parameter λ,

(C− λI)n⃗+ λn⃗ =
∑
c

S⃗(c) =⇒
∑
c

(C− λ)−1S⃗(c) = n⃗+ λ(C− λI)−1n⃗ (D26)
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or, finally, ∑
c

F⃗c = n⃗+ λ(C− λI)−1n⃗ (D27)

The above defines a constraint on learned optimal filters, implying that they are not all linearly independent.
Crucially, this constraint holds regardless of the correlation properties of the noise characterized by V, and is hence
very general.

3. Analytically-calculable TPP filters under the stationary quadrature-independent Gaussian white noise
approximation: “matched filters” for arbitrary C

We find that under specific assumptions on the noise in measured data, the optimal learned filters by the TPP
can be determined analytically using the strategy proposed in the previous section. The special case we find is one
where x⃗(c) in Eq. (D1) experience additive stationary Gaussian white noise. This noise process possesses a δ-function
autocorrelation that further does not vary in time. We additionally assume the autocorrelation is identical for all NO

measured observables. The noise covariance properties of this process are then compactly given by:

Σ
(c)
jk = E[ζ⃗(c)

j ζ⃗
(c)
k ] = Σ(c)δjk (D28a)

where Σ(c) is simply the stationary, observable-independent variance of the Gaussian white noise process. This
naturally simplifies the form of the empirical noise covariance matrix V in Eq. (D18),

V =
∑
c

Σ(c)Ī ≡ V Ī (D29)

where Ī is the identity matrix on RNO·NT×NO·NT . Crucially, this noise process simplifies the second-order correlation
matrix C:

C =

(
G+V Ī

∑
c s⃗

(c)∑
c(s⃗

(c))T C

)
. (D30)

In particular, the contribution from noise correlations now appears as an identity matrix.

a. Obtaining the linear system for filters

To obtain a system of equations for the learned filters, we now consider the action of C on the vector S⃗(c). To do
so, we will once again make use of the simplified block representation of C, which allows us to write:

CS⃗(c) =

(∑
c′ s⃗

(c′)(s⃗(c
′))T +V Ī

∑
c′ s⃗

(c′)∑
c′(s⃗

(c′))T C

)(
s⃗(c)

1

)
=

(∑
c′ s⃗

(c′)[(s⃗(c
′))T s⃗(c)] +

∑
c′ s⃗

(c′) + V s⃗(c)∑
c′ [(s⃗

(c′))T s⃗(c)]] + C

)
(D31)

It proves useful to define the overlap of mean traces

Occ′ = (s⃗(c
′))T s⃗(c), (D32)

following which we can write:

CS⃗(c) =

(∑
c′ Occ′ s⃗

(c′) +
∑

c′ s⃗
(c′) + V s⃗(c)∑

c′ Occ′ + C

)
=

(∑
c′ [Occ′ + 1 + V δcc′ ] s⃗

(c′)∑
c′ [Occ′ + 1]

)
=

(∑
c′ [Occ′ + 1 + V δcc′ ] s⃗

(c′)∑
c′ [Occ′ + 1 + V δcc′ ]

)
−
(

0⃗∑
c′ V δcc′

)
=
∑
c′

[Occ′ + 1 + V δcc′ ]

(
s⃗(c

′)

1

)
− V

(
0⃗
1

)
(D33)
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Finally, defining

Mcc′ = [Occ′ + 1 + V δcc′ ] (D34)

and once again introducing n⃗ from Eq. (D23), we arrive at the form:

CS⃗(c) =
∑
c′

Mcc′ S⃗
(c′) − V n⃗ (D35)

Therefore, we find that the action of C on S⃗(c) can be expressed as a linear combination of the set of vectors {S⃗(c)},
and a vector n⃗ that is independent of c.

We now wish to introduce the unknown filters F⃗c to the above system, using Eq. (D22). To do so, we add and
subtract the regularization parameter λ, and multiply through by the regularized inverse of C. This yields

S⃗(c) =
∑
c′

(C− λI)−1(Mcc′ − λIδcc′)S⃗
(c′) − (C− λI)−1V n⃗

=
∑
c′

(Mcc′ − λIδcc′)F⃗c′ − (C− λI)−1V n⃗, (D36)

Note that this approach foregoes the calculation of the regularized inverse of C in the computation of the learned
filters F⃗c. We emphasize here that if we instead consider observable-dependent Gaussian white noise, the terms Mcc′

are replaced by a block diagonal matrix in R(NO·NT+1)×(NO·NT+1). These matrices will not generally commute with
(C−λI)−1, preventing the transition from the first to the second line above, which is crucial to introducing F⃗c to the
system. Filters for general situations such as that can always be obtained by evaluating Eq. (C7) numerically.

However, Eq. (D36) is not entirely free of the (C− λI)−1 matrix, due to the inhomogeneous term. Fortunately, as
the inhomogeneous term is constant, it can be removed by considering the difference of Eq. (D36) for any two distinct
c values. For example, considering c ̸= c′′ ∈ [1, . . . , C]:

S⃗(c) − S⃗(c′′) =
∑
c′

Mcc′ F⃗c′ −
∑
c′

Mc′′c′ F⃗c′ =
∑
c′

[Mcc′ −Mc′′c′ ] F⃗c′ (D37)

This naturally introduces the difference of mean traces to the calculation of learned filters.
Finally, we recall that the unknown filters F⃗c are not all linearly independent. We therefore use the constraint

Eq. (D25) in the formal limit λ → 0 to eliminate one of the unknown vectors, here taken to be F⃗C :

F⃗C = n⃗−
C−1∑
c′=1

F⃗c′ (D38)

Then Eq. (D37) can be rewritten as:

S⃗(c) − S⃗(c′′) =

C−1∑
c′=1

[Mcc′ −Mc′′c′ ] F⃗c′ + [McC −Mc′′C ] F⃗C

=

C−1∑
c′=1

[Mcc′ −Mc′′c′ ] F⃗c′ −
C−1∑
c′=1

[McC −Mc′′C ] F⃗c′ + [McC −Mc′′C ] n⃗

=

C−1∑
c′=1

[(Mcc′ −Mc′′c′)− (McC −Mc′′C)] F⃗c′ + [McC −Mc′′C ] n⃗ (D39)

Note that there are C − 1 unknowns F⃗c, and hence we require C − 1 equations. These equations are simply
provided by Eq. (D39) by considering C − 1 distinct pairs [c, c′′]. For concreteness, we consider pairs Pp = [c, c′′]
where [c, c′′] ∈ {[1, 2], [2, 3], . . . , [C − 1, C]} indexed by p ∈ [1, . . . , C − 1]. We also introduce notation to individually
identify the states constituting the pth pair, for convenience: if Pp = [c, c′′], Pp(1) = c, Pp(2) = c′′. We then define
the difference of mean traces constituting a pair,

S⃗Pp ≡ S⃗(Pp(1)) − S⃗(Pp(2)) (D40)
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Each pair yields an equation of the form of Eq. (D39); it is easily seen that the full set of C − 1 equations can be
compiled into the matrix system:  S⃗P1

...
S⃗PC−1

 = (Q⊗ I)

 F⃗1

...
F⃗C−1

+ (T⊗ I)

n⃗
...
n⃗

 (D41)

using the properties of the Kronecker product. Here I is the identity matrix on RNO(NT+1)×NO(NT+1) as before, while
both Q and T are elements of the much smaller space R(C−1)×(C−1). In particular, their matrix elements are given
by:

Qpc =
[
(MPp(1)c −MPp(2)c)− (MPp(1)C −MPp(2)C)

]
, Tpc = δpc

[
MPp(1)C −MPp(2)C

]
(D42)

Note further that T is a diagonal matrix.

b. Solving the linear system for filters

Being a simple linear system, Eq. (D41) has the formal solution, F⃗1

...
F⃗C−1

 =
(
Q−1 ⊗ I

) S⃗P1

...
S⃗PC−1

−
(
Q−1 ⊗ I

)
(T⊗ I)

n⃗
...
n⃗

 . (D43)

We can now simply read off the solution for the unknown vector F⃗c:

F⃗c =

C−1∑
p=1

Q−1
cp S⃗Pp −

C−1∑
p=1

Q−1
cp Tppn⃗ (D44)

The first term on the right hand side completely defines the filter components in F⃗c, as they have a zero at the position
corresponding to the bias component. The second term then entirely defines the bias. Using the form of F⃗c, we can
immediately read off the individual filters for each measured quadrature:

f⃗c =
∑
p

Q−1
cp s⃗(Pp) (D45)

The bias terms are finally given by:

bc = −
∑
p

Q−1
cp Tpp (D46)

The remaining learned filter and bias is then given by the constraint, Eq. (D25).
An alternative, more practical form of the learned filters can be extracted by transition from the representation in

terms of difference vectors S⃗Pp , to the individual traces S⃗(c), using Eq. (D40). We find:

f⃗c = Q−1
c1 s⃗(1) +

C−1∑
p=2

[
Q−1

cp −Q−1
c(p−1)

]
s⃗(p) −Q−1

c(C−1)s⃗
(C) (D47)

which provides the learned filters as a linear combination of mean signals corresponding to each state to be classified.
Comparing with Eq. (15) from the main text, we have:

f⃗c =

C∑
c=1

Ccps⃗
(p), Ccp =


+Q−1

c1 if c = 1,

−Q−1
c(C−1) if c = C,

Q−1
cp −Q−1

c(p−1) otherwise.

(D48)
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4. Reduction to standard matched filter for binary classification (C = 2)

For C = 2, the matrix system in Eq. (D41) reduces to a single equation:

S⃗(1) − S⃗(2) = [M11 −M21 − (M12 −M22)] F⃗1 + [M21 −M22] n⃗ (D49)

Hence we can directly read off:

F⃗1 =

(
f⃗1

b1

)
=

1

M11 −M21 − (M12 −M22)

(
s⃗(1) − s⃗(2)

0

)
− M21 −M22

M11 −M21 − (M12 −M22)

(
0⃗
1

)
(D50)
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Appendix E: Time-shuffled data

As discussed in the previous section, the trained weights W take the form of Eq. (C7),

Wopt = YX T (XX T − λI)−1 (E1)

We now consider the operation of a matrix J on X that serves to re-order the time indices of measurement records;
this amounts to an exchange of specific rows of X and is therefore referred to as an exchange matrix, a special case
of the more general permutation matrix in standard linear algebra. As X ∈ R(NO·NT+1)×CNtrain and the exchange
matrix is intended to switch rows of the data, J ∈ R(NO·NT+1)×(NO·NT+1). Furthermore, the exchange matrix satisfies
the properties: J−1 = J = JT , so that JJ = I.

We therefore define a new data matrix X J with exchanged rows under the action of the exchange matrix:

X J = JX =⇒ X = JX J (E2)

where we have used the property that J−1 = J. Note that the target matrix Y is unchanged, since the particular
class a measurement record belongs to should not be related to time ordering of the measurement records.

Then, the trained weights can equivalently be written as:

Wopt = Y(JX J)
T (JX JX T

J J
T − λI)−1 (E3)

which, after some simplification and using JT = J reduces to:

Wopt = YX T
J JJ(X JX T

J )
−1J =

[
YX T

J (X JX T
J − λI)−1

]
J (E4)

The term in square brackets is simply the new trained weights when using the exchanged data matrix X J ; we label
this (Wopt)J . We therefore find:

(Wopt)J = WoptJ (E5)

which simply indicates that the new trained weights are simply exchanged versions of the previous trained weights.
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Figure 10. Comparative classification performance of FGDA versus TPP in the presence of classical correlated
noise. We consider a C = 2 (binary) dispersive qubit readout task using simulated data and for different colored noise
conditions. Darker markers indicate stronger measurement tone amplitudes. The dashed line indicates 1−FFGDA = 1−FTPP.
The inset plots the corresponding noise spectral density S[f ], which remains unchanged with coherent input power.

Appendix F: TPP learning of correlated classical noise

In this appendix section, we use a further example to demonstrate the ability of TPP-based learning to extract
correlations from measured data, to supplement simulations in Sec. V. Like Sec. V B, we again consider simulated
datasets of measured heterodyne records from a measurement chain of a qubit-cavity-amplifier setup, as in Sec. III B.
Now, however, we consider the excess classical noise added by the measurement process to also possess a component
with a colored spectrum (suppressing quadrature labels for clarity):

ξcl(ti) = σWξW(ti) + σPξP(ti) (F1)

where ξW(ti) describes white noise as before, while ξP(ti) describes 1/f (or pink) noise. The power spectral density
of the noise processes is given by the Fourier transform of their steady-state autocorrelation function (by the Wiener-
Khinchin theorem), SN[f ] =

∫
dτ e−i2πfτE[ξN(0)ξN(τ)] for N ∈ {W,P}. The noise processes are normalized so that

the total noise power,
∫
df |SN[f ]| is the same for any of the considered noise processes; hence the relative magnitude

(σP/σW)2 determines the relative strength of the noise processes with different correlation statistics.
We restrict ourselves again to binary classification of states |e⟩ and |g⟩. In Fig. 10, we plot the calculated infidelities

using the MF and TPP approaches against each other in logscale for different noise conditions parameterized by
(σP/σW)2, and as a function of the coherent input tone power: darker markers correspond to readout with stronger
input tones.

We immediately see that if the excess classical noise is purely white, the FGDA and TPP exhibit very similar
performance: both lie along the dashed line of equal infidelities. However, the situation is very different if the added
noise is colored, namely (σP/σW)2 ̸= 0, and hence has a non-zero correlation timescale. We immediately note that
even when the colored noise powers is only a fraction of the white noise power, the TPP-learned filters provide a
non-negligible improvement over the standard MF scheme.
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