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Braiding quantum circuit based on the 4π Josephson effect

John P. T. Stenger, Michael Hatridge, Sergey M. Frolov, and David Pekker
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 9 August 2018; published 22 January 2019)

We propose a topological qubit in which braiding and readout are mediated by the 4π Majorana-Josephson
effect. The braidonium device consists of three Majorana nanowires that come together to make a trijunction.
In order to control the superconducting phase differences at the trijunction, the nanowires are enclosed in a ring
made of a conventional superconductor. In order to perform initialization and readout, one of the nanowires
is coupled to a fluxonium qubit through a topological Josephson junction. We analyze how flux-based control
and readout protocols can be used to demonstrate braiding and qubit operation for realistic materials and circuit
parameters.
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I. INTRODUCTION

Topological quantum computation promises a path towards
robust quantum information storage and manipulation. Protec-
tion from local perturbations arises from nonlocal information
storage, while the robustness of quantum gates is provided
by path-independent braiding operations [1–10]. One way to
build topological quantum computers involves end modes of
topological superconducting nanowires known as Majorana
bound states (MBSs) [9,11–18]. MBSs are predicted to dis-
play non-Abelian braiding statistics in quasi-one-dimensional
networks. Signatures of MBSs have been reported in ex-
periments such as zero-bias conductance peaks in tunneling
[19–21].

Josephson junctions formed between topological super-
conducting nanowires with a pair of MBSs localized across
the junction are predicted to exhibit a 4π Josephson effect
[11,22]. Evidence of the 4π Josephson effect has also been
reported in microwave measurements on topological materials
[23,24].

The future demonstration of non-Abelian statistics will
be implemented by braiding MBSs, which results in non-
Abelian transformations through the Hilbert space of degener-
ate ground states [3,10]. The first braiding proposals involved
interferometry of non-Abelian excitations hosted by fractional
quantum Hall states [5–9]. The next set of proposals suggested
probing the non-Abelian statistics of MBSs hosted either in
superconducting vortices or in chiral edge modes of two-
dimensional topological superconductors [25–32]. Following
experimental reports of MBSs in one-dimensional nanowires,
a set of proposals has been developed based on nanowire
trijunctions by means of manipulating the chemical potential
or charging energy [10,33–37]. Proposals that do not make
use of a trijunction include measurement-based braiding using
Majorana teleportation [38,39] and nanowire networks, which
once again use electrostatic gates to control the topological
phase transition [40]. Since none of the above schemes have
been implemented experimentally and every known scheme
comes with limitations, it is important to further conceptu-
alize braiding mechanisms in the search for streamlined and
complimentary approaches.

In this paper, we conceptualize a braiding scheme that
uses the 4π topological Josephson effect to turn on and
off couplings between neighboring MBSs across a trijunc-
tion. Furthermore, we couple the trijunction to a Majorana-
fluxonium qubit [41] which is used to initialize and read
out the quantum information. Our device constitutes a fully
functional topological qubit for testing the non-Abelian prop-
erties of topological superconductors. One major advantage of
our scheme is that flux control is already prevalent in super-
conducting information technology. In fact, rapid single-flux
quantum devices, in which classical information is encoded
in a single quantum of flux, have been developed nearly to
the point of commercialization [42]. Furthermore, the non-
topological components of our device, such as the fluxonium
qubit, have already been realized in experiment based on
magnetic-field-resilient elements compatible with Majorana
physics [43,44]. It should be stressed that, although other
flux-controlled braiding devices have been proposed [34,35],
our device is fundamentally different in that we utilize flux
to control the phase difference between Majorana nanowires
and couple-decouple Majoranas on adjacent wires via the 4π

Josephson effect, instead of controlling the charging energy of
Majorana islands.

This paper is organized as follows: in Sec. II we discuss the
circuitry used for braiding. In Sec. III we demonstrate how the
braiding circuit is used to flip the state of the topological qubit;
in Sec. IV we present the design for the full qubit including
readout and initialization circuitry. In Sec. V we describe the
procedure for initialization and readout. In Sec. VI we discuss
the effects of flux error and low-frequency noise, and in
Sec. VII we show how the ability to control phase differences
via the external magnetic flux depends on the inductance,
capacitance, and Josephson energy of the device. In Sec. VIII
we conclude.

II. THE BRAIDING CIRCUIT

Figure 1(a) depicts the flux-capacitor-shaped [45]
4π -Josephson braiding circuit. The device consists of
a conventional superconducting ring that is subdivided
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FIG. 1. (a) Topological Josephson trijunction ring. The light blue
segments are p-wave wires. The MBSs are marked by blue dots and
labeled γn. The phase difference between superconductors i and j
is labeled φi j , while the external flux through the loop formed by
superconductors i and j is labeled �i j . The dashed yellow lines show
the electron basis used in the text labeled cn. (b) Braiding sequence
with the location of the MBSs (red and green dots) and the phase
differences φi j . The inner MBS coupling is depicted by an orange
bar. (c) The solid red line shows the braiding path that is required
by the flux corral. The Hilbert space trajectory along the solid path
is equivalent to going twice around the dashed red triangle. (d) The
probability of being in a specific state x± ∈ {a, b, c, d} during the
double-braid process.

using one-dimensional spinless p-wave topologically
superconducting nanowires (referred to as “p-wave wires”
in what follows). The three nanowires come together at
the center of the ring, making a multiterminal topological
Josephson trijunction. The braiding ring hosts six MBSs,
three at the trijunction and three at the outer ends of the
p-wave wires. Using the 4π Josephson effect, we can couple
and uncouple the inner MBSs γ f 1, γ f 2, and γ f 3. When the
phases on any two arms of the junction are equal, the MBSs
on those arms are coupled; when the two arms are out of
phase by π , the MBSs are uncoupled. These phase differences
are tuned by threading external magnetic flux through the
three loops formed by shorting the outer ends of the three
nanowires through a nontopological superconductor ring.
To create MBSs it is necessary to apply in-plane magnetic
fields of the order of 0.1–1T oriented so that MBSs exist in
all arms of the junction. The ideal angle between crossed
nanowires is 30◦ [46] with the field oriented halfway between
the nanowires. Although the out-of-plane fields are too
weak to drive topological transitions in the nanowires, care
should be taken to avoid or compensate flux in the qubit
loops due to the in-plane field. There has already been
some work in this direction [47]. In the future Zeeman
splitting may be generated by local nanomagnets, eliminating
the need for large external in-plane magnetic fields. The
maximum coupling of the inner MBSs is given by the 4π

Josephson energy scale EM , which is determined by the
tunneling amplitude between the inner MBSs. For clarity
of the presentation we focus on the case where all three 4π

Josephson energies are the same and the trivial 2π Josephson
effect is negligible. We note that the 2π Josephson effect
can displace the phase differences at the trijunction set by
the external flux. However, this can be easily avoided by
ensuring that EJ � EL. This will be discussed in more detail
in Sec. VII.

The length of the nanowire arms and their chemical poten-
tial is set so that two MBSs on the same arm (e.g., f1 and g1)
have overlapping wave functions and hence their occupation
acquires a small, but finite, energy gap α. However, when
two of the arms (e.g., 1 and 2) are coupled, the occupation
energy gap for the outer two MBSs on those arms (g1 and g2)
becomes α2/EM . Therefore, on timescales of 1/α < t/2π h̄ <

Em/α2, the level repulsion of the outer two MBSs is negligi-
ble, and their energies are not distinguishable from zero. In
this case, we will refer to the outer MBSs as Majorana zero
modes (MZMs) and will use these for braiding since they are
topologically protected during the aforementioned timescale.
We initialize the three fluxes �12,�23,�31 so that γ f 1 and
γ f 2 are coupled, which means γg1 and γg2 are the MZMs at
the start of braiding while γ f 3 and γg3 are auxiliary MBSs.
For this reason, it is useful to work in the complex fermion
basis cg = 1/2(γg1 + iγg2), c f = 1/2(γ f 1 + iγ f 2), and c3 =
1/2(γ f 3 + iγg3), as labeled in Fig. 1(a).

We will focus on the case of rigid superconductivity, in
which phases φ12, φ23, and φ31 at the trijunction do not un-
dergo quantum fluctuations. The rigidity condition is satisfied
when the inductive energy EL of the outer superconducting
ring dominates the charging energy EC and the Majorana
Josephson energy EM at the trijunction (if either EL/EM or
EL/EC is not large enough, the phase differences can delo-
calize). Furthermore, we shall restrict ourselves to the “flux
corral” condition in which the total flux through all three loops
is zero, �12 + �23 + �31 = 0. With these restrictions, the
external fluxes directly control the phases at the trijunction:
φi j = �i j , and the Majorana bound state Hamiltonian for the
braidonium ring is

Ht
M = iEM

3∑
i=1

γ f iγ f i+1 cos

(
�i,i+1

2

)
+ iα

3∑
i=1

γ f iγgi, (1)

where the index i is defined modulo 3 (i.e., i = 3 + 1 = 1).

III. THE 4π JOSEPHSON BRAIDING PROCEDURE

The braiding process consists of quasiadiabatical transi-
tions between flux configurations in which the trijunction
has one coupling turned on (say, �12 = 0) and the other
two turned off (�23 = π and �31 = −π ). The steps of the
braiding procedure are depicted in Figs. 1(b) and 1(c). Both
panels show the external flux settings at the end of each step
of the braiding process. Figure 1(b) shows the position of the
two Majoranas being braided (red and green dots) during the
process, as well as the coupling between the trijunction arms
(orange bar). During each time step τ , the coupling between
one pair of MBSs is slowly (adiabatically) turned off while the
coupling between another pair is slowly turned on. In the first
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step, for example, the external flux �12 is tuned from zero to
−π , which turns off the coupling between γ f 1 and γ f 2; at the
same time �23 is tuned from −π to zero, which turns on the
coupling between γ f 2 and γ f 3. As these couplings change, the
green Majorana loses weight in γg1 and gains weight in γg3. At
the end of the step it has moved completely from the left arm
to the right arm. The entire process braids the two Majoranas
twice around each other. Figure 1(c) shows the braiding path
through flux space. Although the fluxes at t = 3τ and t = 0
are different, a single exchange has still occurred at t = 3τ as
the Hamiltonian [Eq. (1)] is an even function of the external
flux parameters.

After the double exchange, c†
g → −c†

g. We will use this
change of sign to read out the state of our topological qubit.
In order to detect the change of sign, however, we need to
interfere linear combinations of |ng = 0〉 and |ng = 1〉, which
are in different parity sectors. Since parity is conserved, the
only way to form linear combinations of these states is to
introduce an additional pair of MZMs, γr1 and γr2, which act
as a parity reservoir elsewhere in the device (see discussion
below). By coupling one of these reservoir MZMs (γr1 or γr2)
to one of the initial MZMs (γg1 or γg2) we can interfere the
two occupation states (|ng = 0, 1〉) without breaking parity
conservation. We describe the state of these MZMs using
the complex fermion basis |ng, n f , n3, nr〉, where ni is the
occupation of the ith electron (i ∈ {g, f , 3, r}). Considering
only even-parity states, we have

|a+〉 = |0000〉 + |1001〉 , |a−〉 = |0000〉 − |1001〉 ,

|b+〉 = |0101〉 + |1100〉 , |b−〉 = |0101〉 − |1100〉 ,

|c+〉 = |0110〉 + |1111〉 , |c−〉 = |0110〉 − |1111〉 ,

|d+〉 = |0011〉 + |1010〉 , |d−〉 = |0011〉 − |1010〉 . (2)

Each of these states is a linear combination of |ng = 0〉 and
|ng = 1〉, so that the braiding procedure takes all +-type states
(i.e., |a+〉) to −type states (i.e., |a−〉). A topological qubit
can be formed out of any linear combination of +-type states
and the corresponding linear combination of −-type states.
In Fig. 1(d) we show the probability that the state of the
trijunction ψ (t ) is in a particular occupation state during
the braiding procedure. Here, we show the case where the
qubit is formed by |a+〉 and |a−〉, so that ψ (0) = |a+〉 and
ψ (6τ ) = |a−〉.

The timescale of the braiding procedure has to be slow
enough to be adiabatic but fast enough that we can treat
MBSs as true zero modes (MZMs). It takes approximately t ≈
2π h̄/α for a Majorana to travel from one end of the nanowire
to the other. Therefore, each step of the braiding procedure
τ must last longer than 2π h̄/α. However, the energy gap
between |ng = 0〉 and |ng = 1〉 is on the order of α2/EM ;
therefore, if braiding lasts longer than 2π h̄EM/α2, we will
start to lose coherence. Figure 2 shows the fidelity of the
double-braiding procedure. As seen in Fig. 2, the fidelity
plateaus near unity when 1 � τα � EM/6α (the factor of
6 comes from the fact that the entire procedure takes 6τ

to complete). The farther these limiting timescales are from
each other (i.e., the larger EM/α), the greater the range of
acceptable timescales for braiding is. However, the smaller
α is, the slower the process has to be; thus, the coherence

FIG. 2. Probability of being in the expected state |a−〉 after the
double braid plotted against the log of the duration τ of each step
(in units of 1/α) for different values of α. The horizontal dashed
black line marks perfect braiding. The vertical dashed lines mark the
timescales τ = 1/α (black) and τ = EM/6α2 (color corresponding
to solid curve).

of the device must be longer. One will want to make α as
small as allowed by the fastest decoherence process, e.g.,
the quasiparticle poisoning timescale [48,49]. Based on the
induced gap of the p-wave wires, we expect EM ∼ 0.1 meV
[20], which puts τ ∼ 100 ns.

IV. THE FULL QUBIT CIRCUIT

In the full braidonium qubit, in order to initialize and read
out the topological qubit, we propose to integrate it with
an ancilla Majorana-fluxonium qubit previously proposed in
Ref. [41]. The fluxonium will be coupled to a transmission
line via a microwave resonator made of a magnetic-field-
resilient superconductor, e.g., NbTiN. A schematic of the
entire system is depicted in Fig. 3. The coupling between
the fluxonium and the topological qubit will also proceed via
the 4π Josephson effect, which couples γr1 and γg2 to the
phase φ24 across the Josephson junction of the fluxonium. The
coupling between γr1 and γr2 is much smaller than α, so they
can be treated as MZMs during braiding. The external flux
is controlled by four inductance coils (one for the fluxonium
qubit and three for the trijunction). A number of electrostatic
gates could be used to tune the chemical potential in various
sections of the nanowires. However, once the potentials on the
gates are set, they are not changed in the course of braiding.
Unlike the trijunction ring, we want the fluxonium to undergo
phase slips, so the phase difference φ24 is not necessarily equal
to �24, the external flux through the fluxonium. Therefore,
we have to include the nontopological part of the fluxonium
Hamiltonian:

Hl
NT (φ24,�24) = El

C∂2
φ24

− El
L(φ24 − �24)2 − El

J cos(φ24),

(3)

where the fluxonium loop parameters are the Josephson en-
ergy El

J , the charging energy El
C = e2/2Cl , and the inductive

energy El
L = h̄2/4e2Ll , with Cl being the capacitance and Ll

being the inductance of the fluxonium loop. Phase slips occur
when El

C 	 El
L. The Majorana part of the full Hamiltonian is

HM = Ht
M + iαrγr1γr2 + iE l

m cos

(
φ24

2

)
γg2γr1, (4)
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FIG. 3. Full braidonium device. A fluxonium loop is coupled to
the transmission line via a microwave resonator. The fluxonium loop
is coupled to the trijunction loop through the p-wave wire (light blue
lines). External flux (fast) through the fluxonium loop and each of
the three sections of the braiding ring is controlled by on-chip coils.
Several electrostatic gates (slow) are used to tune the superconduct-
ing nanowires into the topological regime. The locations of MBSs are
marked by blue dots. Uncovered regions of semiconductor nanowire
used for the Josephson junctions are depicted as green lines.

where El
M is the Majorana Josephson energy of the fluxonium

loop.
When El

J ∼ El
m 	 El

C, El
L, the low-energy spectrum of the

nontopological Hamiltonian of the loop is a harmonic os-
cillator trapped in the potential wells formed by the cosine
functions [41]. We will use the first two flux quanta occu-
pation states (|nφ24 = 0〉 and |nφ24 = 1〉) for initialization and
readout. The full Hamiltonian H = Hl

NT + HM can be solved
numerically, as we will now show.

We will rewrite Eq. (4) in the complex fermion basis. Let us
start with Eq. (1). We take c†

g = (γg1 − iγg2)/2 to be the cre-
ation operator for the electron associated with the Majoranas
that will be braided. Then there are two auxiliary electrons,
c†

f = (γ f 1 − iγ f 2)/2 and c†
3 = (γ f 3 − iγg3)/2, which are not

involved in the process but are nevertheless present. Using

this notation, we can write the Majorana operators in terms
of electron operators:

γ f 1 = c†
f + c f , γ f 2 = i(c†

f − c f ),

γg1 = c†
g + cg, γg2 = i(c†

g − cg),

γ f 3 = c†
3 + c3, γg3 = i(c†

3 − c3). (5)

In terms of these electron operators, the trijunction Hamilto-
nian, Eq. (1), becomes

Ht
M (�12,�23)

= α

(
n3 − 1

2

)
+ 2iα(c†

f cg + c f c†
g )

+ EM

(
n f − 1

2

)
cos

(
�12

2

)

− EM (c†
f c†

3 + c†
f c3)

[
cos

(
�23

2

)
+ i cos

(
�31

2

)]

+ EM
(
c f c†

3 + c f c3
)[

cos

(
�23

2

)
− i cos

(
�31

2

)]
,

(6)

where n f = c†
f c f and n3 = c†

3c3 are number operators. Defin-
ing the third number operator, ng = c†

gcg, we can now write
the Hamiltonian in the basis |n f , ng, n3〉,
Ht

M,e(�12,�23)

= EM

[
cos

(
�12

2

)
σ z

f +cos

(
�23

2

)
σ z

f σ
x
3 +cos

(
�31

2

)
σ

y
3

]

+ α
(
σ z

3 + 2σ
y
f δn3=1

)
,

Ht
M,o(�12,�23)

= EM

[
cos

(
�12

2

)
σ z

f +cos

(
�23

2

)
σ z

f σ
x
3 +cos

(
�31

2

)
σ

y
3

]

+ α
(
σ z

3 + 2σ
y
f δn3=0

)
, (7)

where Ht
M,e and Ht

M,o correspond to the even and odd sectors
of 〈n f , ng, n3|Ht

M |n′
f , n′

g, n′
3〉 and σ i

a is the ith Pauli matrix
acting on the ath electron occupation basis |na〉. Notice that,
by separating the Hamiltonian into even and odd parities, we
no longer need all three electron occupations to describe the
state. Two of the occupation numbers and the specification
of either even or odd parity is enough. We have made the
choice to remove the reference to the |ng〉 occupation. Now
we can write the full Majorana Hamiltonian, Eq. (4), in terms
of Pauli matrices, just as we did for Eq (1). We use the basis
|n f , n3〉

⊗ |nr〉, where c†
r = 1/2(γr1 − iγr2). We obtain

HM (�12,�23, φ24)

= EM

[
cos

(
�12

2

)
σ z

f +cos

(
�23

2

)
σ z

f σ
x
3 +cos

(
�31

2

)
σ

y
3

]

+ α
(
σ z

3 + 2σ
y
f δn3+nr=1

) + El
M cos

(
φ24

2

)
σ y

r + αrσ
z
r ,

(8)
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where σ i
r is the i-component Pauli matrix acting on the

reservoir occupation basis |nr〉. The parity reservoir couples
the even- and odd-parity sectors of the trijunction; however,
total parity is still separable. Here, we have written only the
even-parity sector, which is used throughout the text. Odd
parity is very similar.

In order to finish preparing the full Hamiltonian for nu-
merical calculations, we need to deal with the quantum phase
φ24. With a change in variables φ24 → sφ24 + �24, where
s = (EC/EL )1/4, we can write the nontopological part of the
fluxonium Hamiltonian [Eq. (3)] in the harmonic oscillator
basis,

〈φ24|nφ24〉 = 1√
2nn!

√
π

e− φ2

2 Hnφ24
(φ24), (9)

where Hn(φ) are the Hermite polynomials. In this basis we
have

〈nφ24 |Hl
NT (�24)|nφ24 + mφ24〉

= ωl

(
nφ24 + 1

2

)
δmφ24 ,0 + El

J

[
Cnφ24 ,mφ24

(s) cos(�24)

+ Snφ24 ,mφ24
(s) sin(�24)

]
, (10)

where ωl =
√

El
CEl

L and

Cn,m(s) = (−1)m/2

√
2nn!sm+1e−b2/4

√
2n+m(n + m)!

Lm
n

(
s2

2

)
δ(Mod2(m),0),

Sn,m(s) = (−1)(m−1)/2

√
2nn!sm+1e−b2/4

√
2n+m(n + m)!

Lm
n

(
s2

2

)
δ(Mod2(m),1),

(11)

in which Ln
m(b) are the Laguerre polynomials and δMod2(m),0

is zero unless m is even, while δMod2(m),1 is zero unless m
is odd. This Hamiltonian can be solved numerically, after
suitably truncating the Hilbert space. Similarly, we can write
the Majorana Hamiltonian in the harmonic oscillator basis,

〈nφ24 | HM (�12,�23,�31,�24) |nφ24 + mφ24〉

= α
(
σ z

3 + 2σ
y
f δn3+ng,1

)
δmφ24 ,0 + EM cos

(
�12

2

)
σ z

f δmφ24 ,0

+ EM cos

(
�23

2

)
σ z

f σ
x
3 δmφ24 ,0 + EM cos

(
�31

2

)
σ

y
3 δmφ24 ,0

+ El
MCnφ24 ,mφ24

(
s

2

)
cos

(
�24

2

)
σ

y
l

− El
MSnφ24 ,mφ24

(
s

2

)
sin

(
�24

2

)
σ

y
l . (12)

Together Eqs. (10) and (12) define the full Hamiltonian whose
energy levels are plotted in Fig. 4. In constructing Fig. 4,
we set El

C = 5EM , El
L = 0.25EM , El

J = 2.5EM , and El
M =

EM . With these parameters the energy levels that we plot
are fully converged when we truncate the Hilbert space to
the lowest ten Harmonic oscillator levels in the flux basis
(nφ24 = 1, . . . , 10).

(a)

(b)

(rad.)

FIG. 4. (a) Energy levels as a function of �24. The color of the
curve reflects its electron occupation. Each curve represents two
nearly degenerate fermion occupations. Red is both |a+〉 and |d+〉,
blue is |a−〉 and |d−〉, orange is |b+〉 and |c+〉, and purple is |b−〉 and
|c−〉. The dashed lines have the same color scheme as the solid lines,
but the fluxonium is in the first excited state. (b) Energy difference
between states |0, x−〉 and |1, x−〉 (blue) and states |0, x+〉 and |1, x+〉
(red).

V. INITIALIZATION AND READOUT

In order to initialize and read out the fermion state, we
use the shift of the fluxonium frequency in response to the
change in occupation of fermion cr (see Fig. 4). Specifically,
this shift allows us to distinguish between +- and −-type
states using conventional quantum electrodynamic techniques
[50,51]. This is accomplished by (1) driving the system at
a frequency at which the cavity response distinguishes the
fluxonium state and projects the fluxonium into a specific
state and (2) using the fact that the energy separation of the
fluxonium levels depends on the fermion state to selectively
drive fluxonium transitions.

We propose to drive the system using a resonator, as
depicted in Fig. 3. We model the resonator and its coupling
to the fluxonium qubit using the dispersive Hamiltonian:

HR = h̄ω0a†a + 1
2 h̄χa†a

(
σ z

φ24
− 1

) + H, (13)

where H = Hl
NT + HM is the full Hamiltonian, a† and a are

the creation and annihilation operators of the resonator, and
σ z

φ24
is the z-component Pauli matrix in the basis of the first

two fluxonium levels which form the fluxonium qubit, ω0 is
the bare resonator frequency, and χ is the dispersive shift
of the resonator by the fluxonium. When the fluxonium is
in its ground state, the resonator has a resonance peak at
ω0. If, however, the fluxonium is in its first excited state,
then the resonance peak is shifted to ω0 + χ . The state of
the fluxonium (|nφ24 = 0〉 or |nφ24 = 1〉) can be measured by
driving the resonator at either ω0 or ω0 + χ and observing
whether the cavity transmits or reflects the drive photons. In
order to collapse the system into a particular fluxonium state,
we perform multiple measurements until the desired outcome
is achieved. At this point the fermion state remains unknown.
In order to observe whether the fermion state is + or − type,
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FIG. 5. Probability of being in a specific state during the double-
braid process for different initial states. For (a), we start in the state
1/

√
2(|a+〉 + |d+〉), while in (b)–(d) we start in eigenstates |b+〉,

|c+〉, and |d+〉, respectively. A similar plot in which the initial state
is |a+〉 is shown in Fig. 1(d).

we selectively flip the state of the fluxonium. Since fluxonium
shows different resonance frequencies (i.e., different χ ) for
+- and −-type states, a selective π pulse will flip the state of
the fluxonium only if it is specific to the particular fermion
state [51]. Then we measure the state of the fluxonium again.
If it has changed state, then we know that it is in the desired
fermion state (i.e., |a+〉, |b+〉, |c+〉, or |d+〉). Otherwise, we
reset and repeat the entire process until we get the desired
fermion state.

We pause to point out that our initialization procedure does
not have control over which of the +-type states we obtain.
However, as we show below, the braiding operation works as
long as the initial state is in the + sector.

The explicit steps of the initialization procedure to project
onto the ground state of the fluxonium and a +-type fermion
state are outlined below:

(1) Measure the fluxonium by driving the cavity at the
excited-state frequency. Reset and repeat until the fluxonium
is in its excited state.

(2) Send in a selective π pulse which will flip the state of
the fluxonium only if the system is in a +-type fermion state.

(3) Measure the state of the fluxonium. If it is in the ground
state, then the procedure is complete. Otherwise, restart at
step 1.

Figure 4(a) shows energy levels of the full braidonium
Hamiltonian as a function of �24. Indeed, we observe that
the energy difference between the ground and excited levels
depends on the whether the fermion state is a +- or −-
type state [see Fig. 4(b)] as long as �24 
= ±π,±3π, . . . . In
order to observe braiding, we set �24 to a generic value and
initialize the braidonium into the state described by the density

matrix

ρ = |nφ24 = 0〉 〈nφ24 = 0| ⊗
∑

x

∑
y

sx,y |x+〉 〈y+| , (14)

where x, y ∈ {a, b, c, d} label the fermion state and sx,y are
arbitrary constants. Next, we tune to the decoupling point
�24 = π and perform the double-braiding procedure. This
procedure takes any |x+〉 → |x−〉, as seen in Fig. 5. Therefore,
the density matrix becomes

ρ → ρ = |nφ24 = 0〉 〈nφ24 = 0| ⊗
∑

x

∑
y

sx,y |x−〉 〈y−| .

(15)

To determine whether the braiding process has been success-
ful (i.e., read out), we tune �24 to a generic point and apply
a π pulse corresponding to the |0, x−〉 → |1, x−〉 transition
frequency [blue line in Fig. 4(b)]. Successful braiding is
indicated by fluxonium being promoted to the excited state.

VI. EFFECT OF FLUX ERRORS AND LOW-FREQUENCY
NOISE ON BRAIDING

Naively, one would think that the device is insensitive to
all types of flux error and noise as it is topological. This is
not entirely true. Like all trijunction devices, it is essential
to ensure that Majorana zero modes are braided around each
other in the “right sense.” This is accomplished by ensuring
that there is no stray coupling between Majorana zero modes
that are not being exchanged in the particular step of the
braiding operation (see Fig. 6).

To demonstrate the effects of flux errors and low-frequency
flux noise on the device, we consider braiding operations

FIG. 6. Depiction of the trijunction during the first step of the
braiding procedure. The purple numbers show the desired phase
difference between nanowires before and after the step. The goal is
to move the Majorana at γg2 to γg3. Flux error could instead cause the
Majorana at γg1 to move to γg3.
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FIG. 7. (a) A path through the space of phase differences that
does not go straight from one point to the next. The parameter
δ characterizes the point along the curve that is farthest from the
straight line. (b) The fidelity of the path depicted in (a) as a function
of the δ parameter. The fidelity is flat from about −π/16 to π/16, as
shown in the inset. (c) A path through the space of phase differences
that does not hit the vertices at the end of each step. Here, δi measures
the distance between the point that is hit by the path at the end of
step i and the target point. These parameters δi are generated from
a random Gaussian distribution with a standard deviation of σ . (d)
The fidelity, averaged over 100 trials, of the path depicted in (c) as a
function of the standard deviation σ .

along a deformed trajectory in the φ12-φ23 plane. In type-1
deformations the vertices of the braiding path (where two
couplings are completely turned off) are hit, but the trajectory
connecting these points are not straight lines. Braiding error
occurs if the wrong Majorana is moved during a step in
the braiding process due to stray flux turning on the wrong
coupling. As long as the correct couplings dominate, this
error is negligible, which is the case in type-1 deformations.
Figure 7(a) depicts an example of type-1 deforma-
tion where the paths are deformed from the straight-
line path (φa(t ), φb(t )) in a sinusoidal manner (φa(t ) +
δ sin(t/τ ), φb(t ) + δ sin(tτ )), where φa and φb are whichever
two phase differences are changing in a particular step, τ is
the duration of the step, and the total phase is kept to zero.
Figure 7(b) shows the corresponding fidelity as a function of
the magnitude of deformation. We see that the fidelity plateaus
to 1 at relatively large deformations (|δ| ≈ 0.1).

In type-2 deformations, the vertices of the path are missed.
Type-2 deformations are a greater source of braiding error
since, in the vicinity of the vertices, one of the couplings that
are being intentionally varied (say, φ23) is approaching zero.
Therefore, turning on the third coupling even a small amount
can cause it to dominate over φ23. Figure 7(c) depicts a path in
which the target points are missed. Figure 7(d) shows the cor-

responding average fidelity for random offsets δi =
√

δ2
ix + δ2

iy

generated from a two-dimensional Gaussian distribution as a

function of the standard deviation σ of the distribution. The
braiding fidelity stays above 0.99 to about σ ≈ 0.007π , which
is much smaller than the acceptable deformation in type 1.
However, it is still well above the level of experimental control
achievable in the laboratory. In the main text, we estimated the
duration of the braiding process to be about 600 ns, which
means we could run the braiding process 10 million times
and still not see significant flux error from 1/ f noise, which
is about 10−12π at 1 Hz [52]. Perhaps the largest source of
error is the ability of the magnets to set the flux, which is
achievable to about 1 part in the 104 flux quantum, at which
point the average braiding fidelity is approximately 99.999%
of the maximum possible fidelity given perfect flux control.

VII. CONTROLLING THE PHASE DIFFERENCES
VIA EXTERNAL FLUX

Everything up to this point has assumed that the trijunction
is in the classical limit where the phase difference between
superconducting nanowires is completely controlled by the
external flux through each loop. Here, we show that the flux
control can tolerate a moderate number of quantum fluctu-
ations. To see this, we will have to treat the nontopological
part of the Hamiltonian for the trijunction in a more rigorous
manner:

Ht
NT = − Et

C

12

[
∂2
φ12

+ ∂2
φ23

+ (
∂φ12 − ∂2

φ23

)2]
+ Et

L[(φ12 − �12)2 + (φ23 − �23)2

+ (φ12 + φ23 + �31)2]

− Et
J [cos(φ12) + cos(φ23) + cos(φ12 + φ23)], (16)

where Et
J is the Josephson energy of the trijunction, Et

C =
e2/2Ct is the charging energy, and Et

L = h̄2/4e2Lt is the
inductive energy, with Ct and Lt being the capacitance and
the inductance of the trijunction, respectively. This form of the
Hamiltonian was derived by applying the flux corral condition
φ12 + φ23 + φ31 = 0 to the classical Lagrangian and finding
the canonical momenta before quantizing the Hamiltonian.
When the Josephson energy is small and the capacitance
is much larger than the inductance, then the ring is in the
classical regime, and the Hamiltonian is well described by
the ground state. However, in general we can solve this
Hamiltonian in a way similar to how the nontopological part
of the readout loop was solved. We can change variables
and project onto a two-dimensional harmonic oscillator basis.
Figure 8 was generated in this way, keeping the first 100
(10×10) energy levels.

We would like to use the external magnetic flux to control
the phase difference between superconductors such that φ12 =
�12, φ23 = �23 and φ31 = �31. Since the phase differences
follow the condition φ12 + φ23 + φ31 = 0, we must also set
the external flux so that �12 + �23 + �31 = 0. In Figs. 8(a)
and 8(c) we set �31 = −π and vary �12 and �23 under the
condition �23 = π − �12. Figures 8(b) and 8(d) show the
corresponding probability distribution of the ground state over
the phases differences φ12 and φ23 at (�12 = 0,�23 = π ).
For Figs. 8(a) and 8(b) the Josephson energy is the largest of
the three energy scales. We have Et

J = 3.0EM , Et
L = 1.0EM ,
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(a) (b)

(c) (d)

FIG. 8. Controlling the phase difference with the external flux.
(a) and (c) show the energy levels of the braiding ring as a function
of the external flux �12 = π − �23, while �31 = −π for (a) Et

J =
3.0 EM , Et

C = 0.1 EM , and Et
L = 1.0 EM and (c) Et

J = 3.0 EM , Et
C =

0.1 EM , and Et
L = 5.0 EM . (b) and (d) show the probability distribu-

tion of the ground state as a function of the phase differences φ12 and
φ23, corresponding to the red arrows in (a) and (c), respectively. (e)
shows the F factor, which is a measure of the probability of being
in the correct state (φ12 = �12 and φ23 = �23) as a function of the
inductive energy.

and Et
C = 0.1EM . The large Josephson energy causes the

phase to delocalize at (�12 = 0,�23 = π ), where we see that
the ground state is not localized to the point (φ12 = �12,

φ23 = �23). In Figs. 8(c) and 8(d), the inductive energy is
increased, Et

L = 5.0EM , while all other parameters are kept
the same. There are still some small quantum fluctuations,
but the probability distribution is now peaked at (φ12 = �12,

φ23 = �23). Figure 8(e) shows the F factor,

F (�12,�23) =
∣∣ψEt

L
(φ12 = �12, φ23 = �23)

∣∣2

∣∣ψEt
L→∞(φ12 = �12, φ23 = �23)

∣∣2 , (17)

where ψEt
L
(φ12, φ23) is the wave function of the ground state

of the flux part of the braiding ring Hamiltonian with inductive
energy EL. The F factor is a measure of the probability of the
system being at the point (φ12 = �12, φ23 = �23). F (0, π )
limits to unity as we go to the classical regime (large EL).
However, it stays moderately high even for inductive energies
on the order of the Josephson energy.

VIII. CONCLUSION

We have shown that braiding Majorana zero modes can be
performed using a flux-controlled multiterminal 4π Joseph-
son junction. Using external magnetic flux, the phase differ-
ence between the three arms of a topological junction, and
hence the coupling between Majorana bound states on dif-
ferent arms, can be controlled. By tuning these couplings we
can perform a double braid which flips the sign of odd-parity
occupation states in the ring. The state of the topological qubit
can be read out via a fluxonium loop embedded with an addi-
tional pair of MZMs. By observing the separation between
the ground state and the excited state of the fluxonium, one
can test the success of the braiding procedure. The full device
is a complete flux-controlled Majorana qubit.
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