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Increasing the fidelity of single-qubit gates requires a combination of faster pulses and increased
qubit coherence. However, with resonant qubit drive via a capacitively coupled port, these two
objectives are mutually contradictory, as higher qubit quality factor requires a weaker coupling,
necessitating longer pulses for the same applied power. Increasing drive power, on the other hand,
can heat the qubit’s environment and degrade coherence. In this work, by using the inherent non-
linearity of the transmon qubit, we circumvent this issue by introducing a new parametric driving
scheme to perform single-qubit control. Specifically, we achieve rapid gate speed by pumping the
transmon’s native Kerr term at approximately one third of the qubit’s resonant frequency. Given
that transmons typically operate within a fairly narrow range of anharmonicity, this technique is
applicable to all transmons. In both theory and experiment, we show that the Rabi rate of the
process is proportional to applied drive amplitude cubed, allowing for rapid gate speed with only
modest increases in applied power. In addition, we demonstrate that filtering can be used to protect
the qubit’s coherence while performing rapid gates, and present theoretical calculations indicating
that decay due to multi-photon losses, even in very strongly coupled drive lines, will not limit qubit
lifetime. We demonstrate π/2 pulses as short as tens of nanoseconds with fidelity as high as 99.7%,
limited by the modest coherence of our transmon. We also present calculations indicating that this
technique could reduce cryostat heating for fast gates, a vital requirement for large-scale quantum
computers.

I. INTRODUCTION

High fidelity single qubit control is one of the fun-
damental requirements for gate-based quantum comput-
ing. While many factors can limit quantum gate fidelity,
such as cross-talk [1, 2] and leakage to non-computational
states [3], the most fundamental are gate speed and
qubit coherence [4–8], with recent improvements driven
more by increased coherence than enhanced speed [9, 10].
However, for superconducting qubits, single qubit gates
typically use resonant driving of a qubit transition, in
which the requirements for fast gates and coherent qubits
are often contradictory.

For instance, to protect the qubit coherence time,
weakly coupled drive ports and heavily attenuated lines
are typically used to suppress qubit photon leakage, ther-
mal noise [10, 11], and out of band radiation [12]. As
qubit coherence increases, there is a trend towards more
thorough and careful filtering. The increased losses of
filtering and weaker qubit-drive line couplings together
result in longer gate times at a given drive strength. How-
ever, achieving high gate fidelity requires fast gate speeds
and so we attempt to compensate by increasing drive
strength, which in turn increases heating of the cryo-
stat. The heating of filter elements and drive lines [13]
can degrade the qubit by either creating excess thermal
population at the qubit transition or higher frequencies
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(for instance at the superconducting gap) and/or heat-
ing the entire cryostat by exceeding the cooling capacity
of the dilution refrigerator [14]. Moreover, the thermal
time constants (in the millisecond range) are much slower
than the pulses (roughly 10s of nanoseconds range) or
qubit coherence times (∼100µs to 1 ms), and can pro-
duce effects which accumulate and persist across many
experiments [13]. This situation is exacerbated by the
necessity of scaling to larger quantum machines and thus
increased qubit count and associated heating [7].

To combat these limitations, better heat handling of
each component, especially the attenuators on the con-
trol lines, has proven useful [11, 13]. Another solution
is to break the symmetry between input control drives
and out-going qubit photon decay in the power domain
using a non-linear filter [15]. In this paper, we propose
to break the link between qubit coherence and driving by
separating the two processes in frequency space, propos-
ing and demonstrating a new single qubit control scheme
based on parametric driving. Far off-resonant controls
are widely used in parametric amplification [16, 17] and
parametric qubit-cavity [18], multi-cavity [19–21] and
multi-qubit gates [22, 23]. In each of these scenarios, far
off-resonant terms in the Hamiltonian are utilized, con-
suming pump photons to produce effective lower-order
interaction Hamiltonians which need not satisfy energy
conservation. The benefits of parametric driving include
strong interactions and high on/off ratios; the use of re-
flective filters to protect mode frequencies while allowing
strong driving is also well established [21, 24, 25].

In this work, we introduce a single-qubit paramet-
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ric driving scheme, which we term sub-harmonic driv-
ing. In sub-harmonic driving we operate a transmon, a
commonly used fixed-frequency qubit, by parametrically
driving it at an integer fraction of its |g⟩ ↔ |e⟩ transi-
tion frequency. The dominant nonlinear term in a trans-
mon, the self-Kerr, is generated from the fourth order
term of the Josephson junction’s cosinusoidal potential,
with magnitude typically ranging from 150-250 MHz [26].
However, the potential energy also contains fast-rotating
terms that are normally suppressed in the rotating wave
approximation. We pick the 4th order term q̂†q̂q̂q̂ + h.c.,
where q† is the annihilation operator of qubit, and para-
metrically drive it near one third the qubit transition
frequency. Three drive photons are consumed to create
one qubit photon, generating an effective Hamiltonian
ε3a† + h.c., where ε is the drive treated as a stiff pump.
We emphasize that the term which powers this interac-
tion is both ubiquitous and of very similar strength in
every transmon qubit. This scheme can also be adapted
to other qubits and systems by choosing an appropriate
source of nonlinearity, for instance 3rd or 5th order terms
in qubits with asymmetric Josephson elements [27], and
thus can be applied widely in superconducting circuits.

This control scheme has two main advantages. The
first advantage is that the drive frequency is separated
from the qubit transition frequency. It allows us to sup-
press a primary relaxation channel in the system with-
out affecting the ability to control the qubit by engi-
neering the impedance at two widely separated frequen-
cies. To this end, we place a reflective low-pass filter
(LPF) with very low absorption and good isolation in
the stop band at the qubit drive port, as shown in Fig-
ure 1(a). This suppresses qubit photon leakage to the
environment through resonant decay while allowing low-
frequency drive photons to pass freely. Therefore, the
drive port can be more strongly coupled to the qubit
for fast control without increasing the qubit’s direct re-
laxation rate. The second advantage of sub-harmonic
control is that the Rabi rate is proportional to the drive
amplitude cubed because it is a three-photon driving pro-
cess, which allows us to rapidly improve qubit gate speed
with only a moderate increase of drive power.

In this work, we experimentally demonstrate the con-
cept of single qubit, sub-harmonic control and achieve
gates as fast as 35 ns with gate fidelities up to 99.7% on
a typical, unoptimized transmon qubit. We also present
calculations which address two key questions about prac-
tical implementation of sub-harmonic gates. First, we
present a theoretical study of the effects of the low fre-
quency lossy environment on the qubit’s coherence, find-
ing that this coupling offers a negligible decay channel
even for very strong couplings. Second, based on both
theoretical calculations and measured parameters of our
system, we find that the combination of low loss at base
with realistic filter losses should allow high fidelity qubit
gates with lower heating than conventional direct qubit
drives.
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Figure 1. Sub-harmonic driving schematic. (a) A trans-
mon qubit (at left in blue) and a λ/2 resonator for read-
out (at right in orange) are supported on a sapphire chip in-
side an aluminum tube. A low-pass filter (in green) is placed
at the qubit drive port to suppress qubit photon leakage to
the environment while allowing fast single qubit control at
low frequencies. (b) The frequency distribution of the sub-
harmonic drive ωd (red), qubit frequency ωge (blue), and the
readout resonator frequency ωres (orange). Only the sub-
harmonic drive is within the pass-band of the LPF (green).
The dashed, shifted peak of ωge represents the AC-Stark effect
during the sub-harmonic drive. (c) The energy level diagram
of sub-harmonic driving. The AC-Stark effect induced by
sub-harmonic drive creates a detuning δp between the qubit’s
un-driven and driven frames. Flat-top pulses with the drive
frequency ωd = (ωge − δp)/3 (shown at right) are used to con-
trol the qubit state.

II. SUB-HARMONIC DRIVING THEORY

To consider the simplest case for single qubit control,
a transmon qubit driven by a far off resonant single mi-
crowave tone, the Hamiltonian of this system can be writ-
ten as:

Ĥ/ℏ = (ωq − α)q̂†q̂ +
α

12
(q̂† + q̂)4 + ϵ(t)(q̂† + q̂), (1)

where q̂ (q̂†) is the photon annihilation (creation) opera-
tor, ωq the transmon |g⟩ ↔ |e⟩ frequency, and α the (neg-
ative) anharmonicity parameter. The first two terms are
the Hamiltonian of the transmon up to 4th order, which
is a good approximation for analyzing the properties of
sub-harmonic driving. Without loss of generality, the
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drive strength ϵ(t) can be written as:

ϵ(t) =

{
ε(t)e−iωdt + ε∗(t)eiωdt 0 < t < tgate
0 otherwise

(2)

After transitioning to a displaced frame (see Supple-
ment Sec. I A), the Hamiltonian can be written as

ĤD/ℏ = (ωq − α)q̂†q̂ +
α

12
(q̂ + ηe−iωdt + h.c.)4, (3)

where η =
2ε(t)ω

′
q

ω2
d−ω′2

q

represents the drive strength. Ex-

panding the Hamiltonian ĤD, we find numerous 4th

order terms corresponding to different parametric pro-
cesses of the transmon, which can be individually acti-
vated by driving at the correct frequencies. For exam-
ple, driving the term 4ηeiωdtq̂q̂q̂ + h.c. at 3(ωq + α) ac-
tivates the three photon transition |g⟩ ↔ |h⟩ (where |h⟩
is the third excited state), while the two-photon transi-
tion |g⟩ ↔ |f⟩, which is commonly seen in the transmon
spectroscopy (usually termed gf/2), can be activated by
driving the term 6(ηeiωdt)2q̂q̂+h.c. near (2ωq+α)/2. For
sub-harmonic driving, the terms we are interested in are
4(ηeiωdt)3q̂ + h.c. When moved to the rotating frame at
3ωd ≈ ωq, we acquire the desired single-qubit Rabi drive,
as well as a term proportional to (ηη∗)q†q, which repre-
sents the AC-Stark effect during sub-harmonic drive.

In the end, the Hamiltonian has the form:

ĤR
sub/ℏ = (2α|η|2−3δ)q̂†q̂+

1

2
αq̂†q̂†q̂q̂+

1

3
α(η3q̂†+η∗3q̂),

(4)
with δ = ωd − 1

3ωq. Equation (4) shows two important
properties of sub-harmonic driving: the Rabi rate of the
process is proportional to |η|3, and the AC-Stark shift
during the sub-harmonic drive is proportional to |η|2.
The AC-Stark effect also adds a drive dependent phase
on the qubit which needs to be considered and calibrated
in all experiments, as the qubit frequency changes in re-
sponse to the amplitude of the drive.

One potential concern about sub-harmonic driving is
qubit photon decay through the drive line at low fre-
quencies via multi-photon processes, which could limit
coherence when we couple the transmon and drive line
very strongly. We perform a detailed calculation in the
Supplement Sec. IG and summarize key results here. For
a transmon qubit coupled to a low-frequency lossy envi-
ronment, the system-bath coupling strength is

λ(ν) = Θ(ν)
Cc√
Crc

√
ωqν

2πv
, (5)

where Cc is the coupling capacitance between the qubit
and the transmission line, Cr is the capacitance of the
qubit, c is the characteristic capacitance of the transmis-
sion line, and v is the speed of light in the transmission
line [28]. In our case, we put a cut-off (filter) function

Θ(ν) to suppress the high-frequency system-bath cou-
pling. Specifically, the filter function is modelled as

Θ(ν) =

{
1 ν ≤ ωq/3 + ϑ
0 ν > ωq/3 + ϑ,

(6)

where ωq/3 + ϑ is the bandwidth of the filter pass-band.
The decay rate through a three photon decay process can
then be written as

Γ3 =
243

32π2

γ3
1 |α|2
ω4
0

(
ϑ

ω0

)2

(7)

where γ3 = 2πλ2. For a transmon system with typical
properties, because α and γ3 are both much smaller than
ωq, the sub-harmonic decay rate Γ3 is orders of magni-
tude smaller than the decay rate through resonant de-
cay via internal losses or residual coupling to drive ports.
Therefore, Γ3 can be safely neglected even for very strong
couplings.

III. EXPERIMENTAL RESULTS

The sub-harmonic driving scheme was tested on a
single qubit-resonator system, which had a transmon
qubit and a λ/2 stripline resonator [29] with parame-
ters commonly used in the field. Specifically, a trans-
mon qubit (ωge/2π = 3.96GHz, α/2π = −208MHz,
T1/T2R/T2E = 42/11/23µs) and a ωres/2π = 6.73GHz
readout resonator were housed inside a 3 mm diame-
ter aluminum tube. The resonator’s coupling rate is
κext/2π = 5.42MHz and the cross-Kerr between the
qubit and resonator is χ/2π = 0.80MHz. This system
was chosen to represent a general transmon-cavity sys-
tem without any special engineering or specific design
requirements, demonstrating that the sub-harmonic driv-
ing scheme is widely applicable to transmon-based quan-
tum processors.

To better understand the properties of sub-harmonic
driving, we first performed Rabi experiments, driving
the qubit between its ground and excited states. Here,
we first fixed the drive strength and swept the drive
frequency and drive pulse duration. As shown in Fig-
ure 2(a), when using flat-top pulses, the sub-harmonic
Rabi oscillation had a pattern similar to the one observed
when using a resonant drive. By fitting the data, we ex-
tracted both the AC-Stark shift induced by the off reso-
nant drive on the qubit and the Rabi rate at the selected
drive strength.

The experiment was then repeated with different room
temperature amplitudes ranging from 0.05V to 0.38 V.
The voltage here was the output amplitude of the ar-
bitrary waveform generator (AWG) (see Figure S7 for
microwave configuration). Assuming the total insertion
loss on the input line is frequency independent within
the range of frequencies applied, this voltage is linearly
proportional to the drive strength η on the qubit. As
shown in Figure 2(b), with a drive amplitude of 0.05V,
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the Rabi rate was only 40 kHz. When the drive ampli-
tude was increased by 7.6 times to 0.38V, the Rabi rate
reached 12.1 MHz, which is 300 times faster. The Rabi
rate Ω(Vd) and the AC-Stark shift ∆f(Vd) as a function
of drive strength Vd are fitted simultaneously with a sin-
gle free parameter k, which relates the room temperature
and cryogenic drive voltages:

{
∆f(Vd) = 2α(kVd)

2

Ω(Vd) = 2
3α(kVd)

3,
(8)

where the transmon self-Kerr α is a known parameter
measured using qubit spectroscopy. As shown in Fig-
ure 2(b), the data fits to k = −1.197V−1, and corre-
sponds well with the Hamiltonian in Eq. (4).

These Rabi experiments demonstrate that the qubit
state can be controlled with sub-harmonic driving. To
use this scheme in real quantum circuits, we also need
to develop a procedure for calibrating a high-fidelity
single-qubit gate with well-defined parameters. For on-
resonance driving, both deterministic tune-up [30] and
randomized benchmarking procedures have been well de-
veloped [5]. However, these procedures cannot be directly
applied to sub-harmonic gate tune-up without first ad-
dressing the issue of drive induced phase correction. As
shown in Eq. (4) and Figure 2, because of the AC-Stark
shift, the qubit frame rotates at a different speed rel-
ative to generator/lab frame during driving, and effec-
tively adds a phase shift to the qubit. When applying
a sequence of multiple sub-harmonic gates, the relative
phase of the qubit and microwave drive depends on the
history of previously applied pulses and delays. To per-
form gates over the intended direction, we must compen-
sate for these accumulated phase shifts.

In experiment, smoothed flat-top pulses are chosen as
the profile of the gate because they are both time-optimal
and can simplify gate tune-up procedure for Xπ and Xπ/2

gates. Gates with other pulse profiles can be used in
principle, but the tune-up procedure may be more com-
plicated. A flat-top pulse can be separated into three
parts: ramps up and down, the fixed amplitude top, and
a waiting time until the next pulse is applied. Therefore,
the drive induced phase shift can be separated into three
parts respectively: φramp, φflat and φgap. In experiment,
the generator frequency is set to the one third of the
AC-Stark shifted qubit frequency so that it is resonant
with the qubit during the flat-top portion of the pulses,
leaving the phase φflat equal to zero. For the remaining
phases we have:

φgate = φramp + (ωq − 3ωd)tgap. (9)

For flat-top pulses with different durations, only the
flat-top part of the pulse is changed and the ramp-
up/down profile of the pulse is kept the same. As a
result, calibrating φramp of a pulse with one duration
is sufficient for phase correction of any other pulse with
same amplitude.

To perform full single qubit control, we need to tune
up the π and π/2 pulses over the X and Y axes. The first
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Figure 2. Rabi rate and AC-Stark effect vs. sub-harmonic
driving strength. (a) A Rabi experiment for sub-harmonic
driving of the qubit as a function of pulse duration and drive
frequency at fixed drive amplitude of 0.38V. The first 30ns
of data was not measured because of equipment limitations.
At this amplitude, the Rabi rate is 12.1 MHz and the drive-
induced qubit AC-Stark shift is -81 MHz. (b) Rabi rate and
qubit AC-Stark shift vs. drive amplitude. As expected from
theory, the Rabi rate (blue circles) is proportional to drive
amplitude cubed, while the AC-Stark shift (red stars) is neg-
ative and proportional to drive amplitude squared. A single,
simultaneous fit describes both sets of data with only one free
parameter, a scaling factor k converting AWG amplitude to
effective driving strength.

step is choosing an optimum drive amplitude and corre-
sponding frequency by Rabi experiment. This also gives
a rough estimate of pulse duration. Because driving fre-
quency and phase corrections are amplitude dependent,
the drive amplitude is fixed in the later steps to simplify
the tune-up procedure. The details of a gate sequence
based calibration procedure that calibrates each param-
eter is explained in Supplement Sec. II C.

After tuning up all parameters, we can successfully im-
plement Xπ, Xπ

2
, Yπ and Yπ

2
gates. Randomized bench-

marking and interleaved randomized benchmarking are
used to calibrate the average fidelity of all Clifford gates
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and individual fidelity of specific gates, including Xπ,
Xπ

2
, Yπ and Yπ

2
gates. In Figure 3, the blue data is the

result of randomized benchmarking with sub-harmonic
gates. The average Clifford gate fidelity (found by fit-
ting the data to the blue fit curve using an exponen-
tial) is 98.6%. The gate fidelity of single Clifford gates is
characterized using interleaved randomized benchmark-
ing. The fidelity of the interleaved gate can be calculated
using [31],

1− F =
1− pgate/pref

2
. (10)

We measured gate fidelity of X,
√
X, Y and

√
Y to be

99.4%, 99.7%, 99.5%, 99.7% respectively.
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Figure 3. Gate fidelity is calibrated with interleaved random-
ized benchmarking. The blue trace shows the average fidelity
of Clifford gates using sub-harmonic driving. The red trace
shows the average fidelity of a particular interleaved Clifford
gate (Xπ

2
here). We extract a fidelity of 99.7% for Xπ

2
.

The main limitation here is still the qubit coherence
and our ability to generate chains of short pulses (30 ns is
our minimum pulse block in our AWG). We note that by
using an AWG with smaller minimum pulse durations,
the gate speed could be tripled at the cost of dissipat-
ing approximately twice the power, while on-resonance
driving will require 9 times more power. For faster and
higher fidelity gates, the problem of leakage to higher ex-
cited states can be suppressed with a modified version of
standard methods such as DRAG [3] as we detail in the
Supplement Sec. I D.

Since the Rabi rate of the sub-harmonic gate is propor-
tional to drive strength cubed, it also makes the gates
more sensitive to the stability of the control electron-
ics. In particular, we found that consistent, high-fidelity
sub-harmonic gates required temperature stabilizing our
drive circuit, as 1◦C change in temperature caused about
1% change in output amplitude, corresponding to a ∼ 3%
change in the gate’s effective amplitude. Therefore, we
designed and built a PID controlled temperature stabiliz-
ing box, which greatly improved the room-temperature

equipment stability (see Supplement Sec. II B). We note
that sub-harmonic driving will always be a factor of three
more sensitive to such drifts, but this factor does not scale
with coherence time, fidelity, etc.

IV. POTENTIAL FOR REDUCED HEATING
AND FAST SUB-HARMONIC GATES

We have shown experimentally that a sub-harmonic
drive can perform fast and high-fidelity single qubit con-
trol, and found theoretically that strong couplings to
low-frequencies are not associated with enhanced qubit
losses. Of far greater concern is the behavior of the low-
pass filter which protects the qubit. The filter’s figures
of merit are its losses in transmission at the drive fre-
quency (which lead to cryostat heating as discussed be-
low) and its absorptive losses in reflection and insertion
loss at the qubit’s transition frequency (which protect the
qubit from the environment and Purcell decay into the
filter). In room temperature measurements of the filter
used in this experiment (Mini-circuits ZLSS-A2R8G-S+),
the measured impedance is 27.1 − 253.7iΩ at the qubit
frequency. Assuming the qubit lifetime is only limited by
decaying through the drive port, with the low-pass filter
used in the experiment, the resonant decay rate into the
filter’s losses is improved from κres = 4.7 kHz with the
qubit port directly connected to a transmission line to
κLPF = 159Hz using the filter. The corresponding sub-
harmonic decay rate of κsub = 8.8× 10−13 Hz calculated
using Eq. 7 is drastically lower and thus can be neglected.
While these calculations show that such a low-pass filter
can protect qubit lifetime effectively, suppressing the de-
cay rate by about 30 times, we would clearly benefit from
an even lower loss filter, as the qubit-drive port coupling
strength could be further increased to improve gate speed
and reduce required driving power.

Sub-harmonic driving also offers new possibilities to
address cryostat and component heating. It is a common
practice to use attenuation of around 60 dB to reduce
room temperature thermal noise to a very small resid-
ual photon occupancy in the drive lines at the readout
resonator and qubit frequencies. In some experiments
higher attenuation, as much as 80 dB, is used to fur-
ther reduce noise and provide better protection to the
qubits [32, 33].

Figure 4 shows an estimate of heat dissipated at the
base stage of a dilution refrigerator in various driving
configurations. To give a fair comparison, the port
coupling strengths are chosen to limit qubit lifetime to
T1 = 1ms using finite element circuit modeling and the
measured absorption of our current filter. Using reso-
nant driving and configuration 1 shown in Figure 4(a) (a
high-attenuation conventional drive line), approximately
-30 dBm of power is dissipated at base to achieve a π-
pulse time of 10 ns. The current limited cooling ca-
pacity of our dilution refrigerator (∼ 10µW at 20mK)
only allows tens of single qubit drives in parallel before
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Figure 4. Resonant drive vs. sub-harmonic drive. (a) Dif-
ferent configurations of input line for regular drive and sub-
harmonic drive. More attenuation is required to better pro-
tect the qubit from thermal noise in resonant drive method,
while attenuators can be removed and replaced with reflective
filters in sub-harmonic drive method. A commercial LPF is
used on the sub-harmonic drive input line. (b) A comparison
of dissipated heat vs. Rabi rate Ω between different input
line configurations that have a T1 limit of around 1 ms. The
regular drive is shown in dashed line, and sub-harmonic drive
is shown in solid line.

base temperature rises significantly, which can be an im-
portant limit for near-term quantum machines. More-
over, the attenuator itself as a dissipative element can
be heated and generate thermal photons in turn; com-
mercial attenuators have been shown to cool down much
more slowly than the typical experiment repetition rates,
creating still further complications [13]. It would be ad-
vantageous to simply remove these elements.

As shown in the Fig. 4, we compare conventional drive
lines with 20 dB base attenuation + LPF (configuration

2, close to our experimental configuration)and LPF only
at base (configuration 3) for sub-harmonic gates. The
third configuration removes attenuators from the base
plate completely and alleviates the heat dissipation at
base stage. The remaining 3 dB attenuation represents
our estimate of realistic losses on components other than
RF attenuators, such as Eccosorb filters and coaxial ca-
bles. Reducing the losses at base allows us to take fuller
advantage of sub-harmonic driving; at a Rabi rate of
50 MHz, heat dissipation for configuration 3 is improved
by around 20 dB relative to the conventional drive con-
figuration, allowing 100 times as many qubits to be con-
trolled for the same drive power and realistic assumptions
about the drive line configuration.

V. CONCLUSION

In conclusion, we have shown that sub-harmonic driv-
ing is a new single qubit control scheme with fast gate
speed and high fidelity. By breaking the symmetry be-
tween driving and decaying of a qubit in the frequency
domain, we protect the qubit from resonant relaxation
and control the qubit without any need for resonant ac-
cess. Also, the cubic dependence of gate speed on drive
strength could greatly reduce the heat dissipated during
qubit driving for appropriately designed reflective drive
lines. We achieved a gate fidelity of 99.7% as verified
by interleaved randomized benchmarking, limited by the
qubit coherence and the minimum pulse duration of our
control hardware. With longer qubit coherence times and
faster room-temperature control system, it’s possible to
further improve the gate fidelity to 99.99% or even higher,
making it a viable method for single qubit gates in future
large-scale quantum computers.
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I. THEORY

A. Transmon under sub-harmonic drive

The un-driven transmon Hamiltonian can be written as

Ĥ0 =
√
8ECEJ q̂

†q̂ − EC

12
(q̂† + q̂)4

= ℏ(ωq − α)q̂†q̂ + ℏ
α

12
(q̂† + q̂)4,

(S1)

where EJ and Ec are the Josephson energy and charging energy of the transmon qubit, respectively, α = −Ec is the
anharmonicity of the qubit, ℏωq =

√
8EcEJ − Ec is the qubit angular frequency, and q̂ is the photon annihilation

operators of the qubit. In the expansion of (q̂† + q̂)4, most 4th order terms are fast oscillating in the absence of
drives and can be neglected under the rotating wave approximation (RWA). However, these fast-oscillating terms
are important for parametric driving, and so we cannot immediately apply the rotating wave approximation. The
Hamiltonian of a transmon under a single microwave drive can be written as

Ĥ = Ĥ0 + Ĥdrive

= ℏ(ωq − α)q̂†q̂ + ℏ
α

12
(q̂† + q̂)4 + ℏϵ(t)(q̂† + q̂),

(S2)

where

ϵ(t) =

{
ε(t)e−iωdt + ε∗(t)eiωdt 0 < t < tgate
0 otherwise

. (S3)

If the drive frequency is nearly on-resonant with the qubit’s transitions, this equation will yield the typical directly
driven transmon dynamics. On the other hand, for a far-detuned drive, it is useful to continue by applying a
displacement transformation D̂(t) = ezq̂

†−z∗q̂ which cancels the driving term, moving its effects into the qubit operator.
If we define z as

z = − ε(t)

ωd − ω′
q

e−iωdt +
ε∗(t)

ωd + ω′
q

eiωdt and ω
′
q = ω − α, (S4)

the driving term is canceled up to a scalar C. After the displacement transformation, the Hamiltonian can be written
as

ĤD/ℏ = D̂ĤD̂†/ℏ+ i
˙̂
DD̂†

= ω
′
q q̂

†q̂ +
α

12
(q̂† + q̂ − z∗ − z)4 + C,

(S5)

∗ Recently moved to: Pacific Northwest National Laboratory, Richland, WA 99354, USA
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which can be further simplified to:

ĤD/ℏ = ω
′
q q̂

†q̂ +
α

12
(q̂† + q̂ + ηe−iωdt + η∗eiωdt)4, with η =

2ω
′
qε(t)

ω2
d − ω′2

q

(S6)

The fourth order component of Eq. S6 conceals many potential dynamical behaviors of the qubit that can be
activated by applying the drive at specific frequencies ωd [1]. Generally, each term in the expansion of this fourth-
order component involves 1-3 qubit operators q̂ or q̂†, and, correspondingly 3-1 ‘pump’ waves η or η∗. For our purposes,
we are interested in the terms that activate the single-photon excitation (|g⟩ ↔ |e⟩ transition) on the qubit, which
therefore should contain one qubit operator and three pump waves. Considering the drive we applied is at around
one-third of the qubit frequency, i.e. ωd = ωq/3 + δ, we move to the rotating frame that rotates at 3ωd and observe
the effect of this pump:

ĤR/ℏ = R̂ĤDR̂†/ℏ+ i
˙̂
RR̂†, with R̂ = e3iωdtq̂

†q̂. (S7)

After this transformation, the first term in ĤD yields:

R̂(ω
′
q q̂

†q̂)R̂†/ℏ+ i
˙̂
RR̂† = (−α− 3δ)q̂†q̂. (S8)

The second term in ĤD can be expanded and each individual term has the general form of O(ηmη∗n)q†iqje−i(m−n)ωdt,
with i, j,m, n ≥ 0 and i + j + m + n = 4. In our chosen frame, the phase of each term is (m − n + 3i − 3j)ωdt.
The terms that satisfy m − n + 3i − 3j = 0 survive under RWA and have a significant effect on qubit evolution. In
summary, the Hamiltonian has the form:

ĤR/ℏ = (ĤStark + ĤKerr + Ĥeff
d )/ℏ

= (2α|η|2 − 3δ)q†q +
α

2
q†q†qq +

α

3
(η3q† + η∗3q).

(S9)

For each driving amplitude ε(t), we can choose a drive detuning δ, that makes 2α|η|2 − 3δ = 0, such that the first
term in Eq. S9 goes to 0, and the Hamiltonian becomes:

ĤR/ℏ =
α

2
q†q†qq +

α

3
(η3q† + η∗3q), (S10)

which has exactly the same form as a transmon under |g⟩ ↔ |e⟩ on-resonance drive with strength α
3 η

3, in the frame
rotating at ωq [2].

B. Flat-top pulse

The most commonly used pulse shape for transmon control is the Gaussian pulse. The main benefit of a Gaussian
pulse is that its profile in the frequency domain is also a Gaussian function, and thus has a relatively narrow frequency
distribution. It can avoid exciting other unwanted energy transitions in the qubit. In practice, the Gaussian pulse is
usually truncated by a few σ to make a (formally) infinitely long pulse possible to use in experiments. The definition
can be written as:

AG(t) =

{
A0e

− 1
2 (

t−t0
σ )2 −nσ < t− t0 < nσ

0 otherwise
. (S11)

Another frequently used pulse shape for transmon control is the flat-top pulse, or the smoothed square pulse. We
used flat-top pulses in the sub-harmonic driving experiment for the qubit control. Flat-top pulses have the advantage
of a constant amplitude for the duration of the pulse. To narrow the bandwidth in frequency, the edges of the pulses
are often smoothed. Flat-top pulse envelopes can be slightly different because of the definition of the ramp-up/down,
for example it can be defined using be not limited to piece-wise definition, hyper-Gaussian definition, half-cosine
definition and so on. We define the flat-top pulses with tanh functions. The flat-top pulse starting at t = 0 and length
of t0 is defined as:

AF (t) =

{
1
2A0(tanh(kt− t1)− tanh(k(t− t0) + t1)) 0 < t < t0
0 otherwise

(S12)
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Figure S1. A simulation of Rabi experiment with the Gaussian pulse and the flat-top pulse

where k defines the ramping speed and t1/k defines the mid-points of the pulse ramp. When a different pulse length
is required, only t0 is changed in Eq. S12 in our experiment.

Figure S1 shows a numerical simulation of sub-harmonic Rabi process with fixed driving amplitude A0 and varying
length using Gaussian pulses and flat-top pulses. As a result of the AC-Stark shift, the Rabi experiment of Gaussian
pulses looks distorted, because amplitude is changing throughout the pulse. It is complicated to select pulse lengths
for π and π/2 rotations at a given drive frequency. The result of the flat-top pulse, on the other hand, remains a
pattern similar to Rabi experiment result with resonant driving. For Rabi process with fixed pulse length and varying
amplitude and frequency, both types of pulse profiles give distorted results. Therefore, it’s simpler to tune up a single
qubit gate with flat-top pulses with fixed amplitude and varying duration. Choosing flat top pulses has the advantage
of facilitating the calibration of the added-phase resulting from the off-resonance drive, which is particularly crucial
for achieving phase-coherent qubit control, and will be discussed in the next section.

C. Phase correction of sub-harmonic gate

Because of the Stark effect during the sub-harmonic drive, performing a pulse will effectively add a phase to the
qubit. To compensate for the added phase, phase correction needs to be applied to all of the following pulses to
rotate the qubit in the desired direction. It can be considered as adding a virtual-Z gate[3] between two sub-harmonic
gates. Such phase correction is also required in other kinds of superconducting qubit control, such as the parametric
two-qubit gate and the CR gate.

The phase difference between the drive frame and the qubit frame can be written as

φ(tn) =
∑

i

φi =
∑

i

∫ ti+1

ti

ωq(t)− 3ωddt (S13)

where ti is the starting time of pulse i in the whole sequence. Each time interval of a pulse can be separated into two
parts as shown in Figure S2. From ti to ti + tgate is the time when the pulse is applied, and from ti + tgate to ti+1 is
the time gap between two pulses. During the time gap between two pulses, the detuning and driving frequency and
qubit frequency remains constant. Therefore, φi can be written as

φi = φgatei + (ωq − 3ωd)tgap. (S14)

For flat-top pulses, φi can be further simplified. The generator frequency is set to be the same as the qubit
frequency during the flat-top part of the pulse. Therefore, during the flat-top part of the drive, as shown in green
color in Figure S3, the integration value is zero. Therefore, we have φgatei = φrampi

. To vary the length of a pulse,
only the length of the flat-top part of the pulse is changed, while the ramp-up and ramp-down profiles of the pulse
are the same. As a result, the φgatei is a constant for all pulses and only two parameters, φramp and δω = ωq − 3ωd,
need to be calibrated.

Another important thing is performing a gate in the y-axis direction. After correcting the phase caused by the
Stark shift, the remaining phase that needs to be considered is the phase of the gate itself. For example, a Y gate has
a phase of π/2, and a −X gate has a phase of π. Because the gate is a three-photon transition, only 1/3 of the gate’s
phase needs to be added to the drive. It might create difficulties in defining pulses. One trick that can be done is
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Figure S2. A pulse sequence of flat-top pulses. For phase correction, the pulse is separated into three parts, the ramp up/down,
flat and gap parts, represented by red, green, and blue colors in the figure.

flipping the direction of the y-axis of the drive frame and adding the gate phase directly to the drive. However, such
a trick only works for the three-photon sub-harmonic gates in X and Y direction because

φ mod 2π = −3φ mod 2π

⇒ φ =
nπ

2
, n ∈ N.

(S15)

D. Suppressing leakage to high excitation state

For faster sub-harmonic pulses that can cause leakage to higher excitated states, DRAG correction can be applied [4].
Only considering the first three lowest levels of the transmon qubit, the Hamiltonian in Eq. S9 can then be truncated
to:

ĤR/ℏ = (2α|η|2 − 3δ) |e⟩ ⟨e|+ (α+ 4α|η|2 − 6δ) |f⟩ ⟨f |+ α

3
[η∗3(|g⟩ ⟨e|+

√
2 |e⟩ ⟨f |) + h.c.]. (S16)

Defining

σx
j,k = |j⟩ ⟨k|+ |j⟩ ⟨k| , σy

j,k = −i |j⟩ ⟨k|+ i |k⟩ ⟨j| (S17)

ζx = Re(η3), ζy = Im(η3), (S18)

the Hamiltonian can be simplified to

Ĥ/ℏ = (2α|η|2 − 3δ) |e⟩ ⟨e|+ (α+ 4α|η|2 − 6δ) |f⟩ ⟨f |+ α

3
[ζx(σx

g,e +
√
2σx

e,f ) + ζy(σy
g,e +

√
2σy

e,f )]. (S19)

To implement DRAG, the adiabatic transformation

V (t) = exp[−i
ζx

3
(σy

g,e +
√
2σy

e,f )] (S20)

is performed on the Hamiltonian in Eq. S16. Assuming η, ζx, ζy ≪ 1 and δ ≪ α, we have

ĤV ≈ (2α|η|2 − 3δ +
2

9
αζx2) |e⟩ ⟨e|+ (α+ 4α|η|2 − 6δ +

4

9
αζx2) |f⟩ ⟨f |

+
1

3
αζxσx

g,e −
√
2

3
(2α|η|2 − 3δ)ζxσx

e,f +

√
2

18
ζx2σx

g,f +
1

3
(αζy + ζ̇x)(σy

g,e +
√
2σy

e,f ).

(S21)
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It shows that to cancel transition to |f⟩ and ac-Stark shift to the 1st order during the drive,

ζy =
−ζ̇x

α
,

δ =
2

3
α|η|2 − 2

27
αζx2.

(S22)

Using the definition in Eq. S18, we can find the correction pulse amplitude by solving the differential equation:

Im[η(t)3] +
1

α

∂Re[η(t)3]

∂t
= 0

⇒ ε̇x(ε
2
x − ε2y)− 6εxεy ε̇y + α(3ε2xεy − ε3y) = 0.

(S23)

A pulse with 0 phase only has εx component before applying DRAG correction. Therefore, we can find the correction
amplitude by solving for εy in Eq. S23. An example of a 50 ns pulse with first-order DRAG correction is given in
Figure S3. Pulses with phase φ can be derived from the x and y components of zero phase pulse, εx and εy,

ε′x = εxcos(φ/3)− εysin(φ/3)

ε′y = εxsin(φ/3) + εycos(φ/3).
(S24)
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Figure S3. DRAG correction of a 50 ns flat-top pulse. The pulse with zero phase and without DRAG correction is defined to
only have εx component, shown as the blue trace. The orange trace, εy component, is the DRAG correction of the pulse.

E. Modelling drive strength

As shown in Figure 1, we consider a transmon qubit placed inside an Aluminum tube and only couples to a driving
port. It can be modeled by the lumped-element circuit, shown in Figure S4. The two antenna pads A and B of the
transmon are each capacitively coupled to the ground, the wall of the package, and the center pin of the driving port.
When the coupling between transmon pads and the external environment is weak, the Hamiltonian of interaction
between transmon and external drive can be written as Ĥint = 2en̂βVd, where n̂ is the number operator of cooper
pairs and β is a scaling factor between the voltage at the drive port and the voltage across the transmon’s Josephson
junction. The factor β is defined as follow[5],

Ca = Ca0 + Ca1 (S25a)
Cb = Cb0 + Cb1 (S25b)

Cs =
CaCb

Ca + Cb
+ C (S25c)

β =
CaCb1 − CbCa1

Cs(Ca + Cb)
(S25d)
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Figure S4. (a) The lumped-element circuit diagram of transmon with single drive port. (b) the reduced equivalent circuit.

Knowing the power sent by room temperature electronics and the total attenuation on the input line, the drive port
voltage Vd can be calculated easily.

The Hamiltonian of a qubit under a drive with frequency of ωd and amplitude V can be written as,

Ĥ = Ĥ0 + Ĥint

=
1

2
ℏωqσz + 2en̂βV cos(ωdt),

(S26)

where n̂ = n0Σ
√
i+ 1(|i⟩ ⟨i+ 1| + |i+ 1⟩ ⟨i|), n0 = 4

√
Ej/32Ec.[6] Since we are only considering the first two energy

levels of the transmon, n̂ can be simplified to n̂ = n0σ̂x. So Ĥ = ℏωqσ̂z/2 + 2en0βV cos(ωdt)σ̂x

In the interaction picture we have

2en0βV

(
0 e−iωqtcos(ωdt)

eiωqtcos(ωdt) 0

)(
c1(t)
c0(t)

)
= iℏ

(
ċ1(t)
ċ0(t)

)
, (S27)

Assuming ωd = ωq and taking the rotating wave approximation, we have

en0βV

(
0 1
1 0

)(
c1(t)
c0(t)

)
= iℏ

(
ċ1(t)
ċ0(t)

)
, (S28)

It can be solved that
{
c1(t) = a1e

−igt + a2e
igt

c0(t) = b1e
−igt + b2e

igt
, (S29)

where g = en0βV (t)/ℏ and coefficients a1, a2, b1, b2 depend on the initial state |φ⟩ = c1(0) |1⟩+c0(0) |0⟩. Assuming the
initial state is |φ⟩ = |0⟩, we have c1(t) = sin(gt)eiθ1 , c0(t) = cos(gt)eiθ0 . The expectation value of z-axis measurement
is |c1|2 − |c0|2 = −cos(2gt). So the Rabi rate of the process is

Ω = 2enoβV/ℏ. (S30)

The Rabi rate of sub-harmonic process can be calculated together with Eq. 4,

Ωsub =
1

3
α(

ω
′
qΩ

ω2
d − ω′2

q

)3. (S31)

F. Sub-harmonic driving vs. resonant driving

The cooling power of dilution refrigerator at base temperature (∼ 20mK) is limited, usually around 10s µW
because of the low heat conductivity between liquid helium and metal surface at cryogenic temperature. Therefore,
heat dissipation at base stage is an important factor to consider when choosing a controlling method. Meanwhile,
the stages with higher temperature have much higher cooling power, which are less likely to be the limiting factors of
driving power. Here, we compared the heat dissipated at base stage between resonant drive and sub-harmonic drive.
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Figure S5. Capacitance of reduced circuit shown in Figure S4(b) that is calculated from simulation using Ansys Maxwell.

Considering the base stage as a one port device, the dissipated heat inside the device is determined by the input
driving power PB and the total attenuation on base stage drive lines TB . Ignoring the heat absorbed by the transmon
system and the package, the heat dissipated at the base stage approximately equals to PB(1 − T 2

B). To compare
the performance of the two driving scheme, we want to know that, under same gate speed and T1 limitation, which
method dissipates more heat. Therefore, we need to know the relation between driving power PB and Rabi rate Ω
under giving driving port’s coupling strength κext.

As discussed in Sec. I E, the Rabi rate of the qubit under certain driving power can be calculated using a lumped
circuit model. To extract parameters of the lumped circuit model, we used the FEM software Ansys Maxwell to
calculate the capacitance matrix of all conductors, including two antenna pads of the transmon, the tube wall and
the probe pin of the drive port. The readout resonator is neglected in the simulation because it has little effects on
qubit driving. Figure S5 shows the capacitance in the equivalent lumped-element circuit under varying port’s coupling
strength.
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Figure S6. Impedance vs. frequency of low-pass filter used in experiment

The qubit mode properties, such as frequency and lifetime, are acquired using Ansys HFSS. To model the qubit
decaying through the port, a lumped RLC port is assigned to the driving port. For resonant driving, the port is
assigned a 50Ω impedance for perfect impedance match. For sub-harmonic driving, to evaluate the effect of the
low-pass filter, the impedance of the port is calculated from the S-parameter measured by VNA at room temperature.
The commercial low-pass filter Mini-Circuits ZLSS-A2R8G-S+ is measured and used in this experiment. To compare
the performance of two driving methods, the coupling port strength is adjusted so that the qubit mode has the same
Q factor of 2.5× 107, which corresponds to T1 ≈ 1ms.
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G. Qubit relaxation through multi-photon emission process

In this sub-section, we calculate the decay rate of a transmon qubit via sub-harmonic relaxation. We specifically
focus on the relaxation from the first excited state |1⟩ to the ground state |0⟩ via the emission of three photons, each
carrying away approximately ℏωq/3 of energy.

The Hamiltonian that describes the system (i.e. the transmon qubit) and the photon bath (i.e. the transmission
line) is,

H = Hsys +Hbath +Hs-b

Hsys = ωqq
†q +Hnl (S32)

Hbath =

∫
dν ν b†νbν (S33)

Hs-b =

∫
dνλ(ν)(b†νq + bνq

†) (S34)

where we set ℏ = 1, b†ν creates a bath photon with angular frequency ν and λ(ν) describes the system-bath coupling
and we define its form below. Terms contributing to Hnl, which describe the nonlinearity of the transmon, can be
found in Eq. (S1). We remark that the terms q4 and (q†)4 do not participate in the lowest order dynamics, and hence
we ignore these two terms for simplicity. We specifically focus on the nonlinear Hamiltonian

Hnl = g2(q
†q† + qq) + g4(q

†q†q†q + q†qqq) + g′4q
†q†qq, (S35)

where we define g4 = α/3, g2 = α/2 and g′4 = α/2, and α is the anharmonicity of the qubit. The system-bath coupling
strength is

λ(ν) = Θ(ν)
Cc√
Crc

√
ω0ν

2πvtl
, (S36)

where Cc is the coupling capacitance between the qubit and the transmission line, Cr is the capacitance of the qubit, c
is the characteristic capacitance of the transmission line, vtl is the speed of the transmission line, ω0 is the frequency of
the qubit [2]. In our case, we put a cut-off (filter) function Θ(ν) to suppress the high-frequency system-bath coupling.
Specifically, with the Kerr nonlinearity, we assume

Θ(ν) =

{
1 |ν| ≤ ω0/3 + ϑ
0 |ν| > ω0/3 + ϑ

(S37)

Due to the energy conservation, we consider a three-photon relaxation process, i.e., a single transmon excitation
decays to three bath photons. The lowest-order term contributing to the decay rate of the qubit comes from fourth-
order Fermi’s golden rule perturbation theory [7]. Specifically we are looking for transitions from the initial state
|1; vec⟩ to the final state |0; 1ν1 , 1ν2 , 1ν3⟩, where the first half of the ket notation indicates the state of the qubit and
the second part the state of the bath. We ignore the transitions that end up with fewer than three photons, as these
transitions are suppressed by the system-bath low-pass filter. We remark that transitions that end up with three
photons in fewer than three modes are possible and do contribute to the decay rate. However, the rate for these
transitions scales as (D(ν)−1/ω0) (to two distinct modes) and (D(ν)−1/ω0)

2 (all photons go into the same mode),
where D(ν) is the density of states in the transmission line. The density of states of a length l transmission line with
dispersion relation ν = vtlk is given by

D(ν) =
νtl

2πl
. (S38)

Specifically, a 1 m long transmission line with vtl ∼ c/1.5, the density of states D(ν) ∼ 0.032 GHz−1, which gives
D(ν)−1/ω0 ∼ 0.01. This ratio is small compared to other frequency ratios (e.g. |α|/ω0 ∼ 0.1 order). Therefore, we
ignore these transitions [8].

The transition rate can then be calculated from Fermi’s golden rule as

Γ = 2π
1

6

∫ ω0/3+ϑ

ω0/3−ϑ

dν1dν2dν3δ(ω0 − ν1 − ν2 − ν3)

∣∣∣∣∣
∑

m,n,p

⟨0; 1ν1
, 1ν2

, 1ν3
|V |m⟩⟨m|V |n⟩⟨n|V |p⟩⟨p|V |1; vac⟩

(ω0 − εp + iη)(ω0 − εn + iη)(ω0 − εm + iη)

∣∣∣∣∣

2

, (S39)
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where V = Hnl+Hs-b, the summation is over all possible system-bath states, εm,n,p are the energies of the system-bath
state |m⟩, |n⟩ and |p⟩, the factor of 1/6 is to remove the over-counting induced by the frequency integrals, and we
take the limit η → 0+. We then count the virtual paths that are involved in the fourth-order perturbation. Note that
there are two distinct sets of possible paths. One set of the paths consists of states

|p⟩ = |3; vac⟩ , |n⟩ = |2; 1ν1⟩ , |m⟩ = |1; 1ν1 , 1ν2⟩ , (S40)

and all possible permutations of ν1, ν2, and ν3. The other set of paths includes the path

|p⟩ = |0; 1ν1
⟩ , |n⟩ = |2; 1ν1

⟩ , |m⟩ = |1; 1ν1
, 1ν2

⟩ , (S41)

and all the other paths formed by permuting ν1, ν2, and ν3. Putting these considerations together, we obtain the
three-photon relaxation rate

Γ =
2π

6

∫
dν1dν2dν3δ(ω0 − ν1 − ν2 − ν3)

×

∣∣∣∣∣∣
∑

{ν1,ν2,ν3}

6λ(ν1)λ(ν2)λ(ν3)(g2 + g4)

(−ν1 − ν2 + iη)(−ω0 − ν1 + iη)(−2ω0 + iη)
+

2λ(ν1)λ(ν2)λ(ν3)g2
(−ν1 − ν2 + iη)(−ω0 − ν1 + iη)(ω0 − ν3 + iη)

∣∣∣∣∣∣

2

, (S42)

where
∑

{ν1,ν2,ν3} indicates a summation over all terms that are generated by permuting ν1, ν2, and ν3. We then
make the further assumption that ϑ/ω0 ∼ |α|/ω0 ≪ 1. We find that the relaxation rate, to lowest order in ϑ/ω0, is

Γ =
243

32π2

γ3
1 |α|2
ω4
0

(
ϑ

ω0

)2

, (S43)

where we consider that in the coupling bandwidth, the system-bath coupling is slowly varying in the band with
λ(ν) ∼ λ(ω0/3), and we define γ1 = 2π|λ(ω0/3)|2. We further note that when the transmon is coupled to a thermal
bath, which has a mean thermal excitation number

Trbath
(
bν1

b†ν1
ρb

)
= (n̄ν1

+ 1), (S44)

the relaxation rate will depend on the thermal bath temperature. Because the three-photon relaxation process requires
coupling the transmon to three bath photons, the thermal relaxation rate is

Γth, relax = (n̄ω0/3 + 1)3Γ. (S45)

This can be seen from the fact that when calculating the jump term in the master equation, we will have terms in
the form of Tr

{
b†ν1

b†ν2
b†ν3

ρbbν3
bν2

bν1

}
. Meanwhile, the bath will thermally excite the transmon with a rate

Γth, excite = n̄3
ω0/3

Γ. (S46)

II. EXPERIMENT DETAIL

A. Experiment setup

The metal block housing the qubit and cavity’s tube is made of Al-6061 alloy with a 3 mm diameter hollow tube
and three coupling ports. One of the ports is coupled to the transmon for single qubit control. The other two ports
are coupled to the resonator for the dispersive readout . In this experiment, only one of the readout ports is connected
with the output coaxial line and the other one is removed. The transmon qubit and the λ/2 stripline resonator are
fabricated on a 421 nm thick sapphire substrate with around 200 nm Ta film except for the Josephson junction of the
transmon, which is a Al/AlOx/Al junction.

The experiment setup is shown in the Figure S7. We used a Mini-circuits low-pass filter ZLSS-A2R8G-S+ for
protecting the qubit and performing sub-harmonic drives. The sample is mounted at the base plate of the dilution
refrigerator, which is operated at around 20mK. The qubit driving pulses and resonator readout pulses are gener-
ated by upconverting the IF signals from arbitrary waveform generators (Keysight M3202A (1GSa/s) and M3201A
(500 MSa/s)) with LO signals from RF generators (SignalCore SC5511A and SC5506A). For the qubit drive, before
the signal is sent to the sample, a small fraction of it is split using a directional coupler, then downconverted by the
RF signal and sent to the digitizer for monitoring pulse stability.
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Figure S7. Fridge diagram of the sub-harmonic qubit drive experiment.

B. Temperature stabilization

The performance of room temperature electronics depends on their operating status and environment. For example,
the gain of a power amplifier changes as environment temperature changes. In monitoring our pulse properties, we
found the operating temperature, which is regularly perturbed by air-conditioning cycles in the room air, has the most
significant effect on our system performance. As shown in Figure S8(a), a clear dependence on devices’ temperature
can be observed. While a few percents of relative variation in power and phase can often be ignored in simple one
or two pulse protocols, such as T1 or T2 measurements, it is a limiting factor for high-fidelity quantum control, and
it is important for building a stable quantum computer without frequent pulse calibration. Also, this is especially
important for sub-harmonic driving, since it is three times more sensitive to the fluctuation of the pulses’ magnitude
and phase.

Because of the periodic temperature change in the lab, we find about a 1.5 ◦C change of the devices’ temperature,
measured from the built-in sensor of the RF generator. In Figure S8 (b), we see a temperature change with a period
of approximately 4 hours, which is due to the air conditioner setting in the lab. Such fluctuation results in a 2% pulse
magnitude variation. The stability of the electronics improved significantly after we reduce the heat transfer between
the devices and the environment as well as use a PID controlled cooler to actively control devices’ temperature. As
shown in the Figure S8(c), all of the room temperature components, expect for the AWGs and ADCs, are mounted
on a 1/4 inch thick Al breadboard to spread the heat, and placed inside a Styrofoam wrapped box, which reduced the
heat transfer rate between inside and outside. A commercial liquid to-air CPU cooler is mounted on the other side
of the Al board, which is designed as the primary heat transfer channel. The heat transfer rate is controlled by the
speed of the fans which flow over the cooler’s radiator (placed in the room air). The fan speed is determined by a
Arduino-based PID controller that records temperature from a digital thermometer mounted to the Al breadboard.
The temperature sensor and the adjustable fan speed form a closed feedback loop that fix the box temperature to a
desired set point.
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Figure S8. Temperature stability is especially important for sub-harmonic driving, as Rabi rate is cubic proportional to driving
amplitude. (a) The amplitude stability vs temperature before (grey circles and stars) and after stabilization (blue circles and
red stars). (b) The amplitude stability over time without stabilization (grey trace) and with stabilization (blue trace). The
The great improvement in pulse stability makes high fidelity control possible. (c) The experiment setup and a PID-controlled
commercial liquid cooler are highlighted with yellow dashed boxes. The box are wrapped with Styrofoam except for front and
back faces, which are left for connecting coaxial cables.The liquid cooling head are mounted on the Al plate from the bottom
of the box.

C. Pulse tune-up

To perform single qubit control, we need to be able to perform π pulses and π/2 pulses in X and Y direction. For
each gate, as shown in Eq. S12, there are four free parameters that controls the pulse shape: amplitude A0, pulse
length t0, ramping speed k, cutoff factor t1/k. Besides pulse shape, the frequency and overall microwave phase of the
pulse also needs to be tuned up.

The pulse tune-up procedure starts from the Rabi experiment. The purpose of this step is to find a desired drive
strength and the corresponding drive frequency. Figure 2 in the main paper is a summary of many Rabi experiments
performed with different driving amplitudes. The full experimental results are shown in Figure S9. Each plot
corresponds to a data point in Figure 2(b). It shows that the Rabi rate increases quickly as drive amplitude increases
and drive frequency shifts get larger, corresponding well with theoretical calculations.
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Figure S9. The sub-harmonic Rabi process under different driving amplitudes, ranging from 0.05V to 0.38 V. The cubic
dependence of Rabi rate on drive voltage can be observed (note the time axes vary by approximately 100x across the plots).
The grey area in the plots means no data was measured at that region due to hardware limitations.

In the rest of the pulse tune-up procedure, the driving amplitude is fixed so that the drive frequency can be fixed.
Also, k and t1 are fixed so that the pulse edges are the same shape for all pulses, which simplify the phase correction.
There are only two remaining free parameters that need to be tuned up, gate length and gate phase. Gate length is
different for π pulse and π/2 pulse while the gate phase is the same.

The tune-up procedure is shown in the Figure S10. The length of a π pulse is chosen as the first step of calibration.
This is because, ideally, qubit only goes to |g⟩ and |e⟩ state, which phase does not matter. So it can calibrated without
phase correction. The π-pulse length is calibrated with the sequence shown in the inset of Figure S10(b): a π/2-pulse
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Figure S10. The sub-harmonic gates tune-up procedure. (a). Steps of tuning up sub-harmonic gates.The first three experiments
calibrate individual pulse parameters, while randomized benchmarking measures the gate fidelity in the end. (b). The exper-
iment to optimize length of the π pulse. When pulse length is too short or too long, the |g⟩ probability oscillates depending
on the phase of the second pulse. (c) and (d) show the two sequences and experiment results for correcting drive-induced
phase. (c) calibrates the time independent phase errors ϕramp, where the red circle shows the optimal point. (d) calibrates
time dependent phases errors δω.

over x-axis followed by a π-pulse with additional phase. This pulse sequence allows us to calibrate the length of the
π pulse without correcting phase and the amplitude error of the π/2 pulse. As shown in Figure S10(b), we swept the
length of the first pulse and the phase of the second pulse. The pulse length error will affect the |g⟩ probability of the
final state. As the phase of the second pulse changes, a sinusoidal oscillation of |g⟩ probability can be observed, and
its amplitude is proportional to the pulse length error. A more accurate π-pulse length can be acquired by fitting the
minimum of the oscillation amplitude. From this, we find the optimal length for π-pulse is 55.5 ns.

The second step is correcting phase error. As shown in Eq. 9, the phase error induced by the AC-Stark shift consists
of two parts, a constant part φramp and a time-dependent part δωt when pulses are not being applied. They are
calibrated with the Ramsey experiment by varying different pulse parameters, as shown in Figure S10 (b) and (c).
To find the constant part φramp, two π/2 pulse are placed with minimum time gap. The phase of the second pulse
is swept to find the correct compensating phase. For the time-dependent part, the time gap between two pulses are
swept instead. The frequency δω is found by fitting the oscillating frequency of the trace. This experiment allows us
to calibrate the phase of both the π pulse and π/2 pulses for arbitrary times in a sequence.

The third step is to calibrate the length of the π/2 pulse. It is calibrated by repeating the same π/2 pulse n times
to amplify the rotation errors.

These tune-up procedures may be applied in iteration, each time scanning for finer control of the pulse parameters.
More steps of calibration can be applied if DRAG is required. However, with currently achieved gate time and qubit
coherence time, leakage to higher excited states is not the limiting factor of gate fidelity. Finally, we use interleaved
randomized benchmarking to provide a quantitative measure for the fidelity of each pulse type.
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